Характеристическая функция (нечёткая логика)

Характеристическая функция (нечёткая логика)

Функция принадлежности нечёткого множества — это обобщение индикаторной (или характеристической) функции классического множества. В нечёткой логике она представляет степень принадлежности каждого члена пространства рассуждения к данному нечёткому множеству. Степени принадлежности часто смешивают с вероятностями, хотя они принципиально отличны.

Содержание

Определение

Для пространства рассуждения \mathbf{X} \ и данной функции принадлежности \mu : \mathbf{X} \to [0,1] нечёткое множество определяется как

\tilde{\mathit{A}}=\{(x,\mu_{A}(x))\mid x\in\mathbf{X}\}.

Функция принадлежности \mu_{A}(x) \ количественно градуирует приналежность элементов фундаментального множества пространства рассуждения x \in \mathbf{X} нечёткому множеству \tilde{\mathit{A}}. Значение 0 \ означает, что элемент не включен в нечёткое множество, 1 \ описывает полностью включенный элемент. Значения между 0 \ и 1 \ характеризуют нечётко включенные элементы.

Изображение:fuzzy crisp.gif
Нечёткое множество и классическое, четкое (crisp) множество

Классификация функций принадлежности нормальных нечетких множеств

Нечеткое множество называется нормальным, если для его функции принадлежности \mu_{A}(x) \ справедливо утверждение, что существует такой x\in\mathbf{X}, при котором \mu_{A}(x)=1 \  .

Функция принадлежности класса s

Функция принадлежности класса s определяется как:

s \left( x;a,b,c \right)= 
\left\{\begin{matrix} 0, & x \leqslant a, 
\\ 2\left({{x-a}\over{c-a}}\right)^2, & a \leqslant x \leqslant b, 
\\ 1-2\left({{x-c}\over{c-a}}\right)^2, & b \leqslant x \leqslant c,
\\ 1, & x \geqslant c,
\end{matrix}\right.

где b = {{a + c}\over {2}}.

Функция принадлежности класса π

Функция принадлежности класса π определяется через функцию класса s:

\pi \left( x;a,b,c \right)= 
\left\{\begin{matrix} s \left( x;c-b,c-{b \over 2},c \right), & x \leqslant c, 
\\ 1- s \left( x;c,c+{b \over 2},c+b \right), & x \geqslant c, 
\end{matrix}\right.

где b = {{a + c}\over {2}}.

Функция принадлежности класса γ

Функция принадлежности класса γ определяется как:

\gamma \left( x;a,b \right)= 
\left\{\begin{matrix} 0, & x \leqslant a , 
\\ {{x-a}\over {b-a}}, & a \leqslant x \leqslant b,
\\ 1, & x \geqslant b,
\end{matrix}\right.

Функция принадлежности класса t

Функция принадлежности класса t определяется как:

t \left( x;a,b,c \right)= 
\left\{\begin{matrix} 0, & x \leqslant a , 
\\ {{x-a}\over {b-a}}, & a \leqslant x \leqslant b,
\\ {{c-x}\over {c-b}}, & b \leqslant x \leqslant c,
\\ 1, & x \geqslant c,
\end{matrix}\right.

Функция принадлежности класса L

Функция принадлежности класса L определяется как:

L \left( x;a,b \right)= 
\left\{\begin{matrix} 1, & x \leqslant a , 
\\ {{b-x}\over {b-a}}, & a \leqslant x \leqslant b,
\\ 0, & x \geqslant b,
\end{matrix}\right.

См. также

Внешние ссылки

Литература

1. Д. Рутковская, М. Пилиньский, Л. Рутковский. Нейронные сети, генетические алгоритмы и нечеткие системы: Пер. с польского И. Д. Рудинского. — М.:Горячая линия — Телеком, 2004. — 452 с — ISBN 5-93517-103-1


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Полезное


Смотреть что такое "Характеристическая функция (нечёткая логика)" в других словарях:

  • Нечёткие множества — Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control [1]. Л. Заде расширил классическое канторовское понятие… …   Википедия

  • Нечёткое множество — Эту страницу предлагается объединить с Теория нечётких множеств …   Википедия

  • Нечеткие множества — Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control [1]. Л. Заде расширил классическое канторовское понятие… …   Википедия

  • Нечеткое множество — Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control [1]. Л. Заде расширил классическое канторовское понятие… …   Википедия

  • Пушистое множество — Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control [1]. Л. Заде расширил классическое канторовское понятие… …   Википедия

  • Пушистые множества — Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control [1]. Л. Заде расширил классическое канторовское понятие… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»