Нечёткая логика

Нечёткая логика

Нечёткая логика (англ. fuzzy logic) и теория нечётких множеств — раздел математики, являющийся обобщением классической логики и теории множеств. Понятие нечёткой логики было впервые введено профессором Лютфи Заде в 1965 году. В его статье понятие множества было расширено допущением, что функция принадлежности элемента к множеству может принимать любые значения в интервале [0...1], а не только 0 или 1. Такие множества были названы нечёткими. Также автором были предложены различные логические операции над нечёткими множествами и предложено понятие лингвистической переменной, в качестве значений которой выступают нечёткие множества.

Предметом нечёткой логики является построение моделей приближенных рассуждений человека и использование их в компьютерных системах[1].

Содержание

Направления исследований нечёткой логики

В настоящее время существует по крайней мере два основных направления научных исследований в области нечёткой логики:

  • нечёткая логика в широком смысле (теория приближенных вычислений);
  • нечёткая логика в узком смысле (символическая нечёткая логика).

Математические основы

Символическая нечёткая логика

Символическая нечёткая логика основывается на понятии t-нормы. После выбора некоторой t-нормы (а её можно ввести несколькими разными способами) появляется возможность определить основные операции над пропозициональными переменными: конъюнкцию, дизъюнкцию, импликацию, отрицание и другие.

Нетрудно доказать теорему о том, что дистрибутивность, присутствующая в классической логике, выполняется только в случае, когда в качестве t-нормы выбирается t-норма Гёделя.

Кроме того, в силу определенных причин, в качестве импликации чаще всего выбирают операцию, называемую residium (она, вообще говоря, также зависит от выбора t-нормы).

Определение основных операций, перечисленных выше, приводит к формальному определению базисной нечёткой логики, которая имеет много общего с классической булевозначной логикой (точнее, с исчислением высказываний).

Существуют три основных базисных нечётких логики: логика Лукасевича, логика Гёделя и вероятностная логика (англ. product logic). Интересно, что объединение любых двух из трёх перечисленных выше логик приводит к классической булевозначной логике.

Теория приближенных вычислений

Основное понятие нечёткой логики в широком смысле — нечёткое множество, определяемое при помощи обобщенного понятия характеристической функции. Затем вводятся понятия объединения, пересечения и дополнения множеств (через характеристическую функцию; задать можно различными способами), понятие нечёткого отношения, а также одно из важнейших понятий — понятие лингвистической переменной.

Вообще говоря, даже такой минимальный набор определений позволяет использовать нечёткую логику в некоторых приложениях, для большинства же необходимо задать ещё и правило вывода (и оператор импликации).

Нечеткая логика и нейронные сети

Поскольку нечеткие множества описываются функциями принадлежности, а t-нормы и k-нормы обычными математическими операциями, можно представить нечеткие логические рассуждения в виде нейронной сети. Для этого функции принадлежности надо интерпретировать как функции активации нейронов, передачу сигналов как связи, а логические t-нормы и k-нормы, как специальные виды нейронов, выполняющие математические соответствующие операции. Существует большое разнообразие подобных нейро-нечетких сетей neuro-fuzzy network (англ.) . Например, ANFIS ( Adaptive Neuro fuzzy Inference System) - адаптивная нейро-нечеткая система вывода.[2] (англ.)

Она может быть описана в универсальной форме аппроксиматоров как

 y(x)=\sum^{N}_{i=1} \phi_i(x)*\theta_i ,

кроме того, этой формулой могут быть описаны также некоторые виды нейронных сетей, такие как радиально базисные сети (RBF), многослойные персептроны (MLP), а также вейвлеты и сплайны.

Примеры

Нечёткое множество, содержащее число 5

Нечёткое множество, содержащее число 5, можно задать, например, такой характеристической функцией: \mu_A \left( x \right) = \left( 1+\left| x - 5 \right| ^ n \right) ^{-1}

Пример определения лингвистической переменной

В обозначениях, принятых для лингвистической переменной:

  • X = «Температура в комнате»
  • U = [5, 35]
  • T = {«холодно», «тепло», «жарко»}
Fuzzy logic temperature en.svg

Характеристические функции:

  • \mu_{cold} \left( u \right) = \frac{1}{1+\left( \frac{u-10}{7} \right) ^{12} }
  • \mu_{ok} \left( u \right) = \frac{1}{1+\left( \frac{u-20}{3} \right)^{6} }
  • \mu_{hot} \left( u \right) = \frac{1}{1+\left( \frac{u-30}{6} \right)^{10} }

Правило G порождает новые термы с использованием союзов «и», «или», «не», «очень», «более или менее».

  • не A: 1 - \mu_A \left( u \right)
  • очень A: \left( \mu_A \left( u \right) \right) ^ 2
  • более или менее A: \sqrt { \mu_A \left( u \right)}
  • A или B: \max \left( \mu_A \left( x \right), \mu_B \left( x \right) \right)
  • A и B: \min \left( \mu_A \left( x \right), \mu_B \left( x \right) \right)

См. также

Примечания

  1. В. В. Круглов, M. И. Дли, Р. Ю. Голунов. Нечеткая логика и искусственные нейронные сети. — М.: Физматлит, 2000. — 224 с. ISBN 5-94052-027-8.
  2. Jang, J.-S. R., "ANFIS: Adaptive-Network-based Fuzzy Inference Systems," IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 665-685, May 1993.

Литература

  • Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений. М.: Мир, 1976. 166c.
  • Тэрано, Т.; Асаи, К.; Сугэно, М. Прикладные нёчеткие системы. М.: Мир, 1993. 368c.
  • Новак В., Перфильева И., Мочкрож И. Математические принципы нечёткой логики = Mathematical Principles of Fuzzy Logic. — Физматлит, 2006. — 352 с. — ISBN 0-7923-8595-0
  • Круглов В. В. Дли М. И. Голунов Р. Ю. Нечёткая логика и искусственные нейронные сети. М.: Физматлит, 2001. 221с.
  • Дьяконов А. П., Круглов В. В. MATLAB. Математические пакеты расширения. Специальный справочник. СПб.: Питер, 2001. 480с (имеются главы по нечёткой логике и нейронным сетям).
  • Дьяконов А. П., Абраменкова И. В., Круглов В. В. MATLAB 5 с пакетами расширений. Под редакцией проф. В. П. Дьяконова. М.: Нолидж, 2001. 880с (имеются главы по нечёткой логике и нейронным сетям).
  • Дьяконов А. П., Круглов В. В. MATLAB 6.5 SP1/7/7 SP1/7 SP2+Simulink 5/6. Инструменты искусственнго интеллекта и биоинформатики. М.: СОЛОН-Пресс, 2006. 456с.
  • Рутковский Л. Методы и технологии искусственного интеллекта: Пер. с польского И. Д. Рудинского. М.: Горячая линия — Телеком, 2010. — 520 с. ISBN 5-9912-0105-6
  • Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы: Пер. с польского И. Д. Рудинского. М.: Горячая линия — Телеком, 2004. — 452 с. ISBN 5-93517-103-1
  • Uziel Sandler, Lev Tsitolovsky Neural Cell Behavior and Fuzzy Logic. Springer, 2008. — 478 с. ISBN 978-0-387-09542-4

Ссылки



Wikimedia Foundation. 2010.

Смотреть что такое "Нечёткая логика" в других словарях:

  • нечёткая логика — размытая логика — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы размытая логика EN fuzzy logic …   Справочник технического переводчика

  • нечёткая логика — neraiškioji logika statusas T sritis automatika atitikmenys: angl. fuzzy logic vok. Fuzzy Logik, f rus. нечёткая логика, f; размытая логика, f pranc. logique flouée, f …   Automatikos terminų žodynas

  • Нечёткая логика первого порядка — Эта страница требует существенной переработки. Возможно, её необходимо викифицировать, дополнить или переписать. Пояснение причин и обсуждение на странице Википедия:К улучшению/8 августа 2012. Дата постановки к улучшению 8 августа 2012. Нечёткая… …   Википедия

  • Характеристическая функция (нечёткая логика) — Функция принадлежности нечёткого множества это обобщение индикаторной (или характеристической) функции классического множества. В нечёткой логике она представляет степень принадлежности каждого члена пространства рассуждения к данному нечёткому… …   Википедия

  • Нечёткая логическая переменная — может быть описана тройкой параметров <a, X, А>, где: а  имя нечёткой переменной; Х  универсальное множество, на котором заданы значения переменной а; A  нечёткое подмножество универсального множества X, для каждого элемента… …   Википедия

  • Нечёткий регулятор — (англ. fuzzy controller)  регулятор, построенный на базе нечеткой логики[1] [2] Для реализации нечеткого регулятора необходимо: Определить входные лингвистические переменные. Например «Время посещения страницы» и «Частота посещения… …   Википедия

  • Нечёткие множества — Нечёткое (или размытое, расплывчатое, туманное, пушистое) множество понятие, введённое Лотфи Заде в 1965 г. в статье «Fuzzy Sets» (нечёткие множества) в журнале Information and Control [1]. Л. Заде расширил классическое канторовское понятие… …   Википедия

  • Логика — Гр …   Википедия

  • Логика (философия) — Логика (др. греч. λογική «наука о рассуждении», «искусство рассуждения» от λόγος  «речь», «рассуждение»)  наука о формах, методах и законах интеллектуальной познавательной деятельности, формализуемых с помощью логического языка. Поскольку это… …   Википедия

  • Нечёткое множество — Эту страницу предлагается объединить с Теория нечётких множеств …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.