Принцип математической индукции
- Принцип математической индукции
-
Математическая индукция — в математике — один из методов доказательства. Используется, чтобы доказать истинность некоего утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 — база индукции, а затем доказывается, что если верно утверждение с номером n, то верно и следующее утверждение с номером n + 1 — шаг индукции, или индукционный переход.
Доказательство по индукции наглядно может быть представлено в виде так называемого принципа домино. Пусть какое угодно число косточек домино выставлено в ряд таким образом, что каждая косточка, падая, обязательно опрокидывает следующую за ней косточку (в этом заключается индукционный переход). Тогда, если мы толкнём первую косточку (это база индукции), то все косточки в ряду упадут.
Точное описание
Предположим, что требуется установить справедливость бесконечной последовательности утверждений, занумерованных натуральными числами: 
Допустим, что
- Установлено, что P1 верно. (Это утверждение называется базой индукции.)
- Для любого n доказано, что если верно Pn, то верно Pn + 1. (Это утверждение называется индукционным переходом.)
Тогда все утверждения нашей последовательности верны.
|
Логическим основанием для этого метода доказательства служит так называемая аксиома индукции, пятая из аксиом Пеано, определяющих натуральные числа. Верность метода индукции эквивалентна тому, что в любом подмножестве натуральных чисел существует минимальный элемент.
Существует также вариация, так называемый принцип полной математической индукции. Вот его строгая формулировка:
Пусть имеется последовательность утверждений . Допустим, что
- Установлено, что P1 верно.
- Для любого натурального n доказано, что если верны все
, то верно и Pn + 1. (Это утверждение называется индукционным переходом.)
Тогда все утверждения в этой последовательности верны.
|
Принцип полной математической индукции также эквивалентен аксиоме индукции в аксиомах Пеано.
Примеры
Задача. Доказать, что, каковы бы ни были натуральное n и вещественное q ≠ 1, выполняется равенство

Доказательство. Индукция по n.
База, n = 1:

Переход: предположим, что

тогда

,
что и требовалось доказать.
Комментарий: верность утверждения Pn в этом доказательстве — то же, что верность равенства

См. также
Вариации и обобщения
Литература
- Н. Я. Виленкин Индукция. Комбинаторика. Пособие для учителей. М., Просвещение, 1976.—48 с
- Л. И. Головина, И. М. Яглом Индукция в геометрии, «Популярные лекции по математике», Выпуск 21, Физматгиз 1961.—100 с.
- Р. Курант, Г. Роббинс «Что такое математика?» Глава I, § 2.
- И. С. Соминский Метод математической индукции. «Популярные лекции по математике», Выпуск 3, Издательство «Наука» 1965.—58 с.
Wikimedia Foundation.
2010.
Полезное
Смотреть что такое "Принцип математической индукции" в других словарях:
Метод математической индукции — Математическая индукция в математике один из методов доказательства. Используется, чтобы доказать истинность некоего утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 база индукции, а затем… … Википедия
ИНДУКЦИИ АКСИОМА — утверждение о справедливости для всех хнек рого предиката Р(х), определенного на множестве всех неотрицательных целых чисел, если выполняются следующие условия: 1) справедливо Р(0),2) для любого х, если верно Р(х), то верно и P(x+1). И. а.… … Математическая энциклопедия
ИНТУИЦИОНИЗМ — (от позднелат. intuitio, от лат. intueor пристально смотрю) направление в обосновании математики и логики, согласно которому конечным критерием приемлемости методов и результатов этих наук является наглядно содержательная интуиция. Вся математика … Философская энциклопедия
Трансфинитные числа — (от Транс… и лат. finitus ограниченный) обобщённые порядковые числа. Определение Т. ч. опирается на понятие вполне упорядоченного множества (см. Упорядоченные и частично упорядоченные множества). Каждое конечное множество можно сделать… … Большая советская энциклопедия
интуиционизм — направление в обосновании математики и логики, согласно которому конечным критерием приемлемости методов и результатов этих наук является наглядно содержательная интуиция. Вся математика должна опираться, согласно И., на интуитивное представление … Словарь терминов логики
СОФИЗМ — (греч. sophisma хитрая уловка, измышление) рассуждение, кажущееся правильным, но содержащее скрытую логическую ошибку и служащее для придания видимости истинности ложному утверждению. С. является особым приемом интеллектуального мошенничества,… … Философская энциклопедия
ТОЖДЕСТВА ПРОБЛЕМЫ — проблемы эквивалентности, проблемы иден тичности, проблемы равенства с л о в (англ. word problems) – задачи нахождения общего метода (алгоритма), позволяющего для произвольной пары элементов к. л. множества, в к ром определено отношение типа… … Философская энциклопедия
Софизм — (от греч. sóphisma уловка, ухищрение, выдумка, головоломка) умозаключение или рассуждение, обосновывающее какую нибудь заведомую нелепость, абсурд или парадоксальное утверждение, противоречащее общепринятым представлениям. Аристотель… … Большая советская энциклопедия
Трансфинитная индукция — способ математических доказательств, обобщающий обычный принцип математической индукции (См. Математическая индукция). См. Трансфинитные числа … Большая советская энциклопедия
Софизм — (от греч. σόφισμα, «мастерство, умение, хитрая выдумка, уловка, мудрость») ложное высказывание, которое, тем не менее, при поверхностном рассмотрении кажется правильным. Софизм основан на преднамеренном, сознательном нарушении правил логики … Википедия