- Функция Мёбиуса
-
Функция Мёбиуса
— мультипликативная арифметическая функция, применяемая в теории чисел и комбинаторике, названа в честь немецкого математика Мёбиуса, который впервые рассмотрел её в 1831 году.
Содержание
Определение
определена для всех натуральных чисел
и принимает значения
в зависимости от характера разложения числа
на простые сомножители:
если
свободно от квадратов (то есть не делится на квадрат никакого простого числа) и разложение
на простые множители состоит из чётного числа сомножителей;
если
свободно от квадратов и разложение
на простые множители состоит из нечётного числа сомножителей;
если
не свободно от квадратов.
По определению также полагают
.
Свойства и приложения
Функция Мёбиуса мультипликативна: для любых взаимно простых чисел
и
выполняется равенство
.
Сумма значений функции Мёбиуса по всем делителям целого числа
, не равного единице, равна нулю
Это, в частности, следует из того, что для всякого непустого конечного множества количество различных подмножеств состоящих из нечётного числа элементов равно количеству различных подмножеств состоящих из чётного числа элементов — факт, применяемый также в доказательстве формулы обращения Мёбиуса.
Функция Мёбиуса связана с функцией Мертенса отношением
Функция Мертенса в свою очередь тесно связана с задачей о нулях дзета-функции Римана, см. статью гипотеза Мертенса.
Обращение Мёбиуса
Первая формула обращения Мёбиуса
Для арифметических функций
и
,
тогда и только тогда, когда
.
Вторая формула обращения Мёбиуса
Для вещественнозначных функций
и
, определенных при
,
тогда и только тогда, когда
.
Здесь сумма
интерпретируется как
.
См. также
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 23 мая 2012.Категория:- Арифметические функции
Wikimedia Foundation. 2010.