- Погружение (топология)
-
Иное название этого понятия — «Иммерсия»; см. также другие значения.
В топологии, погружение или иммерсия — такое отображение
одного топологического пространства в другое, при котором каждая точка в
имеет окрестность
, которую
гомеоморфно отображает на
.
Это понятие применяется главным образом к отображению многообразий, где часто дополнительно требуется еще выполнение условия локальной плоскости. Последнее условие автоматически выполнено, если многообразия
и
являются дифференцируемыми, и матрица Якоби отображения
имеет в каждой точке максимальный ранг, равный размерности
.
Классификация погружений
Задача классификации погружений одного многообразия в другое с точностью до так называемой регулярной гомотопии сведена к чисто гомотопической задаче. В дифференцируемом случае, гомотопия
называется регулярной, если матрица Якоби имеет максимальный ранг при каждом
и непрерывно зависит от
. Дифференциал
погружения определяет послойный мономорфизм касательного расслоения
в касательное расслоение
. Регулярная гомотопия определяет гомотопию таких мономорфизмов.
Оказывается, что этим устанавливается биекция между классами регулярных гомотопий и гомотопическими классами мономорфизмов расслоений.
Задача погружения в евклидовы пространства сводится к задаче гомотопической классификации погружений в многообразия Штифеля
. Например, так как
, то имеется только один класс погружений сферы
в
, так что стандартное вложение регулярно гомотопно своему зеркальному отражению (то есть сферу можно «регулярно вывернуть наизнанку», см. парадокс Смейла). Так как
, то имеется счётное число классов погружений окружности в плоскость, а так как расслоение Штифеля над
гомеоморфно проективному пространству
и
, то имеется только два класса погружений
в
.
Для улучшения этой статьи желательно?: - Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
- Проставив сноски, внести более точные указания на источники.
Категории:- Топология
- Дифференциальная геометрия и топология
Wikimedia Foundation. 2010.