- полунорма
- f. seminorm
Русско-английский словарь математических терминов. — Американское математическое общество. Э.Д. Лоувотер. 1990.
Русско-английский словарь математических терминов. — Американское математическое общество. Э.Д. Лоувотер. 1990.
Полунорма — или преднорма обобщение понятия норма; в отличие от последней, полунорма может равняться нулю на ненулевых элементах пространства. Определение Полунормой называется функция , в линейном пространстве над полем вещественных или комплексных… … Википедия
ПОЛУНОРМА — конечная неотрицательная функция рна векторном пространстве Е(над нолем действительных или комплексных чисел), подчиненная условиям: для всех и скаляров l. Примером П. служит норма;. отличие заключается в том, что для П. допустимо р(х)=0 при .… … Математическая энциклопедия
Преднорма — Полунорма или преднорма обобщение понятия норма; в отличие от последней, полунорма может равняться нулю на ненулевых элементах пространства. Определение Полунормой называется функция , в линейном пространстве L над полем вещественных или… … Википедия
Нормированное векторное пространство — У этого термина существуют и другие значения, см. Пространство. В нашем пространстве понятие «длина вектора» понимается интуитивно как расстояние между его началом и концом. Наиболее важными свойствами «длины вектора» являются следующие: Длина… … Википедия
Линейное нормированное пространство — В евклидовом пространстве понятие «длина вектора» понимается интуитивно как расстояние между его началом и концом. Наиболее важными свойствами «длины вектора» являются следующие: Длина нуль вектора, , равна нулю; длина любого другого вектора… … Википедия
Нормированное пространство — В трёхмерном пространстве понятие «длина вектора» понимается интуитивно как расстояние между его началом и концом. Наиболее важными свойствами «длины вектора» являются следующие: Длина нуль вектора, , равна нулю; длина любого другого вектора… … Википедия
ВЛОЖЕНИЕ ФУНКЦИОНАЛЬНЫХ ПРОСТРАНСТВ — теоретико множественное включение линейного нормированного пространства Vв линейное нормированное (полунормированное) пространство W, при к ром для любого справедливо неравенство с постоянной С, не зависящей от . При этом есть норма (полунорма)… … Математическая энциклопедия
ИНФРАБОЧЕЧНОЕ ПРОСТРАНСТВО — локально выпуклое линейное топологич. пространство, в к ром каждая бочка (т. е. поглощающее выпуклое замкнутое уравновешенное множество), поглощающая любое ограниченное множество, является окрестностью нуля. Важный класс И. п. доставляют бочечные … Математическая энциклопедия
ВЕСОВАЯ ФУНКЦИЯ — в е с, функциональный множитель, позволяющий получить конечность нормы заданного типа для функции, у к рой указанная норма (или полунорма) без этого множителя бесконечна. Понятие В. ф. играет большую роль в вопросах приближения функции (в… … Математическая энциклопедия
ВЕСОВОЕ ПРОСТРАНСТВО — весовой класс, пространство с весом, пространство функций, имеющих конечную норму (или полунорму) с нек рым функциональным множителем весом. При этом норма (полунорма) функции наз. в этом случае весовой нормой (полунормой), х вес наз. также… … Математическая энциклопедия
ГЁЛЬДЕРА УСЛОВИЕ — неравенство, в к ром приращение функции оценивается через приращение ее аргумента. Функция , определенная в области Е n мерного евклидова пространства, удовлетворяет в точке Г. у. с показателем (порядка ), где , и коэффициентом (у), если для всех … Математическая энциклопедия