- алгебраическая подгруппа
- мат. algebraic subgroup
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
АЛГЕБРАИЧЕСКАЯ ГРУППА ПРЕОБРАЗОВАНИЙ — алгебраическая группа G, действующая регулярно на алгебраич. многообразии V. Точнее, А. г. п. есть тройка морфизм алгебраич. многообразий, удовлетворяющий условиям: для всех и g, (е единица G). Если определены над полем k, то наз. алгебраич.… … Математическая энциклопедия
АЛГЕБРАИЧЕСКАЯ ТЕОРИЯ ЧИСЕЛ — раздел теории чисел, основной задачей к рого является изучение свойств целых чисел полей алгебраических чисел конечной степени над полем рациональных чисел. Все целые числа поля расширения К поля степени п могут быть получены с помощью… … Математическая энциклопедия
АЛГЕБРАИЧЕСКАЯ K-ТЕОРИЯ — раздел алгебры, к рый в основном занимается изучением К функторов по существу это часть общей линейной алгебры. Она имеет дело со структурной теорией проективных модулей и их групп автоморфизмов. Упрощенно, это обобщение результатов о… … Математическая энциклопедия
АЛГЕБРАИЧЕСКАЯ ГРУППА — группа G, наделенная структурой алгебраического многообразия, в к рой умножение и переход к обратному элементу являются регулярными отображениями (морфизмами) алгебраич. многообразий. А. г. наз. определенной над полем , если ее алгебраич.… … Математическая энциклопедия
АЛГЕБРАИЧЕСКАЯ КРИВАЯ — алгебраическое многообразие размерности 1. А. к. является наиболее изученным объектом алгебраической геометрии. В дальнейшем под А. к. понимается, как правило, неприводимая А. к. над алгебраически замкнутым полем. Наиболее простым и интуитивно… … Математическая энциклопедия
АЛГЕБРАИЧЕСКАЯ ПОВЕРХНОСТЬ — двумерное алгебраическое многообразие. Вместе с алгебраическими кривыми А. п. представляют собой наиболее изученный класс алгебраич. многообразий. Богатство задач и идей, применяемых для их решения, делает теорию А. п. одним из самых интересных… … Математическая энциклопедия
ЛИНЕЙНАЯ АЛГЕБРАИЧЕСКАЯ ГРУППА — алгебраическая группа, бирационально изоморфная алгебраич. подгруппе полной линейной группы. Алгебраич. группа Gлинейна тогда и только тогда, когда алге браич. многообразие Gаффинно, т. е. изоморфно замкнутому (в топологии Зариского)… … Математическая энциклопедия
КОНГРУЭНЦ-ПОДГРУППА — подгруппа Нполной линейной группы GL(n, R )над кольцом R, обладающая следующим свойством: существует такой ненулевой двусторонний идеал кольца R, что где т. е. Нсодержит все матрицы из GL(n, R), сравнимые с единичной матрицей по модулю Более общо … Математическая энциклопедия
ДИАГОНАЛИЗИРУЕМАЯ АЛГЕБРАИЧЕСКАЯ ГРУППА — аффинная алгебраич. группа G, изоморфная замкнутой подгруппе алгебраического тора. Таким образом, Gизоморфна замкнутой подгруппе мультипликативной группы всех диагональных матриц нек рого фиксированного порядка. Если Gопределена над полем k и… … Математическая энциклопедия
МАКСИМАЛЬНЫЙ ТОР — 1) М. т. линейной алгебраической группы G алгебраическая подгруппа в G, являющаяся алгебраическим тором и не содержащаяся ни в какой большей подгруппе такого типа. Пусть, далее, группа Gсвязна. Объединение всех М. т. группы Gсовпадает с… … Математическая энциклопедия
УНИПОТЕНТНАЯ ГРУППА — подгруппа Uлинейной алгебраич. группы G, состоящая из унипотентных элементов. Если отождествить G с ее образом при изоморфном вложении в группу GL(V)автоморфизмов подходящего конечномерного векторного пространства V, то У. г. это подгруппа,… … Математическая энциклопедия