простой гомоморфизм

простой гомоморфизм
мат. simple homomorphism

Большой англо-русский и русско-английский словарь. 2001.

Игры ⚽ Поможем написать курсовую

Смотреть что такое "простой гомоморфизм" в других словарях:

  • ГРУППА — множество, на к ром определена операция, наз. умножением и удовлетворяющая спец. условиям (групповым аксиомам): в Г. существует единичный элемент; для каждого элемента Г. существует обратный; операция умножения ассоциативна. Понятие Г. возникло… …   Физическая энциклопедия

  • Идеал (алгебра) — У этого термина существуют и другие значения, см. Идеал (значения). Идеал одно из основных понятий абстрактной алгебры. Наибольшее значение идеалы имеют в теории колец, но также определяются и для полугрупп, алгебр и некоторых других… …   Википедия

  • Спектр кольца — У этого термина существуют и другие значения, см. Спектр (значения). Спектром кольца называется множество всех простых идеалов кольца . Спектр обозначается так: . Гомоморфизм из кольца в кольцо индуцирует отображение их спектров (н …   Википедия

  • ДИВИЗОР — обобщение понятия делителя элемента коммутативного кольца. Впервые (под назв. идеальный делитель ) это понятие возникло в работах Э. Куммера [1] об арифметике круговых полей. Теория Д. для коммутативного кольца А с единицей без делителей нуля… …   Математическая энциклопедия

  • ПУЧКОВ ТЕОРИЯ — специальный математич. аппарат, обеспечивающий единый подход для установления связи между локальными и глобальными свойствами топологич. пространств (в частности, геометрич. объектов) и являющийся мощным средством исследования многих задач в… …   Математическая энциклопедия

  • Кольцо частных — В коммутативной алгебре кольцом частных S 1R кольца R (коммутативного с единицей) по мультипликативной системе называется пространство дробей с числителями из R и знаменателями из S с арифметическими операциями и отождествлениями, обычными для… …   Википедия

  • Тензорное произведение — операция над линейными пространствами, а также над элементами (векторами, матрицами, операторами, тензорами и т.д.) перемножаемых пространств. Тензорное произведение линейных пространств и есть линейное пространство, обозначаемое . Для элементов… …   Википедия

  • БРАУЭРА ГРУППА — поля k группа классов конечномерных центральных простых алгебр над полем k, относительно эквивалентности, определенной следующим образом. Две центральные простые k алгебры А к В конечного ранга эквивалентны, если существуют такие целые… …   Математическая энциклопедия

  • ТРАНСГРЕССИЯ — в расслоенном пространстве соответствие между классами когомологий слоя и базы. Точнее, если Е связное расслоенное пространство с базой Ви слоем F, A абелева группа, то Т. в Еесть соответствие определенное формулой где пограничный гомоморфизм, а… …   Математическая энциклопедия

  • Индефинитное произведение — Тензорное произведение  одно из основных понятий линейной алгебры. Содержание 1 Тензорное произведение модулей 2 Свойства …   Википедия

  • Умножение двухэлементного тензора — Тензорное произведение  одно из основных понятий линейной алгебры. Содержание 1 Тензорное произведение модулей 2 Свойства …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»