линейная сепарабельность

линейная сепарабельность
мат. linear separability

Большой англо-русский и русско-английский словарь. 2001.

Игры ⚽ Поможем написать курсовую

Смотреть что такое "линейная сепарабельность" в других словарях:

  • Линейная сепарабельность — Два множества не разделимых линейно в …   Википедия

  • Многослойный перцептрон Румельхарта — У этого термина существуют и другие значения, см. Многослойный перцептрон. Архитектура многослойного перцептрона Многослойный перцептрон  частный случай перцептрона Розенблатта, в котором один алгоритм обратного распространения …   Википедия

  • Сепарабельное пространство — (от лат. separabilis  отделимый) топологическое пространство, содержащее конечное или счётное всюду плотное множество. Многие пространства, возникающие в математическом анализе и геометрии, являются сепарабельными. Сепарабельные… …   Википедия

  • БАЗИС — множества X минимальное порождающее его подмножество В. Порождение означает, что применением операций нек рого класса к элементам получается любой элемент Это понятие связано с понятием зависимости: элементы Xпосредством операций из ставятся в… …   Математическая энциклопедия

  • РЕТРАКТ — т о п о л о г и ч е с к о г о п р о с т р а нс т в а X подпространство Аэтого пространства, для к рого существует ретракция X на А. Если пространство X хаусдорфово, то всякий Р. пространства Xзамкнут в X. Всякое непустое замкнутое множество… …   Математическая энциклопедия

  • Ретракт — топологического пространства   подпространство этого пространства, для которого существует ретракция на ; то есть непрерывное отображение , тождественное на (то есть такое, что при всех …   Википедия

  • Окрестностный ретракт — Ретракт топологического пространства X  подпространство A этого пространства, для которого существует ретракция X на A; то есть непрерывное отображение , тождественное на A (то есть такое, что f(x) = x при всех ). Ретракт топологического… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»