СПЕЦИАЛЬНЫЕ ФУНКЦИИ

СПЕЦИАЛЬНЫЕ ФУНКЦИИ
СПЕЦИАЛЬНЫЕ ФУНКЦИИ

- отдельные классы функций, возникающих вомногих теоретич. и прикладных задачах, обычно при решении дифференц. ур-ний. <В физике чаще всего встречаются гамма-функция (см. Эйлера интегралы),ортогональные полиномы, сферические функции, цилиндрические функции, гипергеометрическиефункции и вырожденные гипергеометрические функции, параболическогоцилиндра функции, интегральные синус и косинус, интеграл вероятности(см. Интегральные функции), Матьё функции, эллиптические функции идр. Все перечисленные ф-ции, за исключением гамма-функции, ф-ций Матьёи эллиптич. ф-ций, являются решениями обыкновенного дифференц. ур-ния 2-гопорядка:
8058-65.jpg

где 8058-66.jpg- полиномы, степень к-рых не выше 2,8058-67.jpg- полином, степень к-рого не выше 1, z - комплексная переменная.

Напр., ур-ние Бесселя
8058-68.jpg

является частным случаем ур-ния (1) при 8058-69.jpg,8058-70.jpg,8058-71.jpg. Спомощью замены и=8058-72.jpgи выбора ф-ции 8058-73.jpgур-ние (1) можно привести к виду:
8058-74.jpg

[8058-75.jpg - полином, <степень к-poгo не выше 1,8058-76.jpg -постоянная]. При
8058-77.jpg

ур-ние (2) имеет полиномиальные решения, определяемые ф - л о й Р од р и г а:
8058-78.jpg

п - нормировочная постоянная, п - степеньполинома, ф-ция 8058-79.jpgудовлетворяет ур-нию 8058-80.jpg],к-рые после линейной замены переменной переходят в классич. ортогональныеполиномы (полиномы Якоби, Лагерра и Эрмита).

Ур-ние (2) в зависимости от степени полинома 8058-81.jpgможно привести к следующим канонич. видам:
8058-82.jpg

(гипергеометрическое уравнение Гаусса),
8058-83.jpg

(вырожденное гипергеометрическое уравнение),
8058-84.jpg

(уравнение Эрмита).

Обобщая ф-лу Родрига (4), можно получить в явном виде частные решенияур-ния (2) при произвольных 8058-85.jpgв виде интегрального представления
8058-86.jpg

где величина v связана с 8058-87.jpgсоотношением, аналогичным соотношению (3):
8058-88.jpg

ф-ция 8058-89.jpg- решение ур-ния
8058-90.jpg

контур С - отрезок прямой (s1, s2), наконцах к-рого выполнено условие:
8058-91.jpg

Контуры такого вида можно выбрать лишь при нек-рых ограничениях, наложенныхна коэф. ур-ния (2). Распространение результатов, полученных при такихограничениях, на более общие случаи можно получить с помощью аналитич. <продолжения решений. Из интегрального представления (5) легко вывести всесвойства перечисленных С. ф.: разложения в степенные ряды, разл. функциональныесоотношения, асимптотич. разложения и др.

При помощи аналогичных рассуждений можно построить теорию разностныханалогов С. ф., в частности классич. ортогональных полиномов дискретнойпеременной на равномерных и неравномерных сетках.

С. ф. возникают обычно при разделении переменных и отыскании собств. <ф-ций дифференц. операторов в нек-рых системах координат. Такие операторычасто инвариантны относительно к.-л. группы преобразований, к-рые переводятсобств. ф-ции оператора в собств. ф-ции, отвечающие тому же собств. значению. <Т. о., каждому элементу группы ставится в соответствие линейное преобразованиев пространстве собств. ф-ций, наз. представлением группы. Поэтомусуществует связь между С. ф. и матричными элементами представлений групп. <Используя свойства представлений, можно получить разд. ф-лы для С. ф.,напр. ф-лы сложения, интегральные представления, рекуррентные ф-лы.

Так, представления группы движения евклидовой плоскости связаны с цилиндрич. <ф-циями, представления группы вещественных унимодулярных матриц 2-го порядка- с гипергеом. ф-циями. Особенно часто в физике используют представлениягруппы вращений трёхмерного пространства, с ними связаны Вигнера функции, <Клебша - Гордана коэффициенты, и Вигнера 6j-символы, к-рые можновыразить через ортогональные полиномы непрерывного или дискретного аргумента. <Напр., ф-ции Вигнера удаётся записать с помощью полиномов Якоби или полиномовКравчука. Коэф. Клебша-Гордана и 6j -символы Вигнера можно выразитьчерез полиномы Хана и полиномы Рака.

Лит.: Б е и т м е н Г., Э р д е й и А., Высшие трансцендентныефункции, пер. с англ., 2 изд., т. 1-2, М., 1973-74; Виленкин Н. Я., Специальныефункции и теория представлений групп, 2 изд., М., 1991; Никифоров А. Ф.,Уваров В. Б., Специальные функции математической физики, 2 изд., М., 1984;Справочник по специальным функциям, пер. с англ., М., 1979. А. Ф. Никифоров.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

Смотреть что такое "СПЕЦИАЛЬНЫЕ ФУНКЦИИ" в других словарях:

  • Специальные функции — встречающиеся в различных приложениях математики (чаще всего в различных задачах математической физики) функции, которые не выражаются через элементарные функции. Специальные функции представляются в виде рядов или интегралов. Специальные функции …   Википедия

  • СПЕЦИАЛЬНЫЕ ФУНКЦИИ — функции различных специальных классов, особенно часто встречающиеся при решении задач математической физики. Основные специальные функции являются решениями линейных дифференциальных уравнений 2 го порядка с переменными коэффициентами:… …   Большой Энциклопедический словарь

  • специальные функции — функции различных специальных классов, особенно часто встречающиеся при решении задач математической физики. Основные специальные функции являются решениями линейных дифференциальных уравнений 2 го порядка с переменными коэффициентами:… …   Энциклопедический словарь

  • СПЕЦИАЛЬНЫЕ ФУНКЦИИ — в широком смысле совокупность отдельных классов функций, возникающих при решении как теоретических, так и прикладных задач в самых различных разделах математики. В узком смысле под С. ф. подразумеваются С. ф. математич. физики, к рые появляются… …   Математическая энциклопедия

  • Специальные функции — (математические)         функции различных специальных классов, особенно часто встречающиеся при решении задач математмческой физики. Основными С. ф. являются решениями линейных дифференциальных уравнений второго порядка с переменными… …   Большая советская энциклопедия

  • СПЕЦИАЛЬНЫЕ ФУНКЦИИ — функции разл. спец. классов, особенно часто встречающиеся при решении задач матем. физики. Основные С. ф. являются решениями линейных дифференц. ур ний 2 го порядка с переменными коэф.: цилиндрич., сферич. и др. функции …   Естествознание. Энциклопедический словарь

  • СПЕЦИАЛЬНЫЕ ФУНКЦИИ — ф ции и классы ф ций, встречающиеся при решении мн. задач естествознания и техники, например гамма функция, сферические функции, цилиндрические функции …   Большой энциклопедический политехнический словарь

  • Функции Скорера — (присоединённые функции Эйри) специальные функции, представляющие собой общие решения дифференциального уравнения: Введены Р. Скорером в 1950 году.[1] Интегральное выражение функций Скорера: Также функции Скор …   Википедия

  • Функции Матьё — Функции Матьё  математические специальные функции, являющиеся периодическими решениями уравнения Матьё. Используются при решении различных задач математической физики, в частности, при описании волнового движения с эллиптическими граничными… …   Википедия

  • Функции Кельвина — Функции Кельвина  группа бесселевых функций. Каждая их пара представляют решения дифференциального уравнения: Введены Уильямом Томсоном (лордом Кельвином), который исследовал их в приложениях. Содержание 1 Функции Кельвина первого рода …   Википедия

Книги

  • Специальные функции, Р. Аски, Р. Рой, Дж. Эндрюс. Книга является учебником по теории специальных функций, отражающим существенный прогресс в этой области, достигнутый во второй половине XX в. Значительную часть изложенного материала нельзя… Подробнее  Купить за 1026 грн (только Украина)
  • Специальные функции, Аски Р.. Книга является учебником по теории специальных функций, отражающим существенный прогресс в этой области, достигнутый во второй половине XX в. Значительную часть изложенного материала нельзя… Подробнее  Купить за 793 руб
  • Специальные функции, Р. Аски, Р. Рой, Дж. Эндрюс. Книга является учебником по теории специальных функций, отражающим существенный прогресс в этой области, достигнутый во второй половине XX в. Значительную часть изложенного материала нельзя… Подробнее  Купить за 720 руб
Другие книги по запросу «СПЕЦИАЛЬНЫЕ ФУНКЦИИ» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»