ШЕВАЛЛЕ ГРУППА

ШЕВАЛЛЕ ГРУППА

-линейная алгебраич. группа над нек-рым полем, связанная с полупростой комплексной алгеброй Ли. Пусть -Ли полупростая алгебра над -ее подалгебра Картана, -система корней алгебры относительно -система простых корней, -базис Шевалле алгебры - его линейная оболочка над И пусть -точное представление алгебры Ли в конечномерном векторном пространстве V. Оказывается, что в . существует решетка (т. е. свободная абелева подгруппа, базис к-рой является базисом пространства V), инвариантная относительно всех операторов m-натуральное число). Если k- произвольное поле и то определены гомоморфизмы заданные формулами

Подгруппы порождают в GL (Vk) нек-рую подгруппу Gk, к-рая и наз. группой Шевалле, связанной с алгеброй Ли представлением полем k. В случае, когда (присоединенное представление), Ш. г. были определены К. Шевалле (С. Chevalley) в 1955 (см. [1]).
Если К - алгебраически замкнутое поле, содержащее k, то Ш. г. С K есть связная полупростая линейная алгебраич. группа над К. определенная и разложимая над простым подполем Ее алгебра Ли изоморфна Группа Gk является коммутантом группы GK(k) точек группы GK, рациональных над k. Любая связная полупростая линейная алгебраич. группа над K изоморфна одной из Ш. г. Алгебраич. группы GKGk как абстрактные группы) зависят лишь от решетки порожденной весами представления Если Г j совпадает с решеткой корней Г 0, то GK наз. присоединенной группой, а еели 1 (решетка весов, см. Ли полупростая группа), то GK наз. универсальной, или односвяаной, группой. Если GK- универсальна, то Gk = GK(k).
Ш. г. GK всегда совпадает со своим коммутантом. Центр группы Gk конечен. Напр., центр Zуниверсальной группы Gk изоморфен Ноm (Г 10, k*), а соответствующая присоединенная группа изоморфна Gk/Z и имеет тривиальный центр.
Если алгебра проста, то присоединенная Ш. г. Gk проста, за исключением следующих случаев: |k| =2, - алгебра Ли типов A1, B2, G2; |k|=3, -алгебра Ли типа А 1. Другие серии простых групп можно получить, рассматривая подгруппы неподвижных точек нек-рых автоморфизмов конечного порядка Ш. г. (т. н. скрученные группы).
Если поле k конечно, то порядок универсальной группы Gk вычисляется по формуле

где q = |k|, di(i = l, . .., r) - показатели алгебры Ли т. е. степени свободных образующих алгебры многочленов на инвариантных относительно Вейля группы, - число положительных корней.
Имеется развитая теория рациональных линейных представлений Ш. г. Gk над бесконечным полем k, сводящаяся к случаю алгебраически замкнутого поля, а в последнем случае совпадающая с теорией рациональных представлений полупростых алгебраич. групп. Если проста, Gk- универсальная Ш. г. над бесконечным полем . и -нетривиальное неприводимое конечномерное представление группы Gk (как абстрактной группы) над алгебраически замкнутым полем K, то, существуют такой конечный набор вложений и такой набор рациональных представлений групп что По поводу представлений Ш. г. см. также [2], [3], [5].

Лит.:[1] Шевалле К., лМатематика


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "ШЕВАЛЛЕ ГРУППА" в других словарях:

  • Группа Бурбаки — Николя Бурбаки (фр. Nicolas Bourbaki)  коллективный псевдоним группы французских математиков (позднее в нее вошли несколько иностранцев), созданной в 1935 году. Шарль Дени Бурбаки, французский генерал, фамилия которого была взята в качестве… …   Википедия

  • ОРТОГОНАЛЬНАЯ ГРУППА — группа всех линейных преобразований n мерного векторного пространства Vнад полем k, сохраняющих фиксированную невырожденную квадратичную форму Q на V(т. е. таких линейных преобразований j, что Q(jn(v))=Q(v) для любого ). О. г. принадлежит к числу …   Математическая энциклопедия

  • ПРОСТАЯ КОНЕЧНАЯ ГРУППА — конечная группа, в к рой нет нормальных подгрупп, отличных от всей группы и от единичной подгруппы. П. к. г. наименьшие строительные блоки , из к рых с помощью расширений может быть собрана любая конечная группа. Каждый фактор композиционного… …   Математическая энциклопедия

  • ЛИ ГРУППА — группа G, обладающая такой структурой аналитического многообразия, что отображение прямого произведения в Gана литично. Другими словами, Ли г. это множество, наделенное согласованными структурами группы и аналитич. многообразия. Ли г. наз.… …   Математическая энциклопедия

  • ЛИНЕЙНАЯ ГРУППА — группа линейных преобразований векторного пространства Vконечной размерности n над нек рым телом К. Выбор базиса в пространстве Vреализует Л. г. как группу невырожденных квадратных матриц степени пнад телом К. Тем самым устанавливается изоморфизм …   Математическая энциклопедия

  • ДИКСОНА ГРУППА — группа экспоненциальных автоморфизмов классической простой алгебры Ли типа G2 над конечным полем F. Если порядок Fравен q, то порядок Д. г. равен q6(q2 l)(q6 1). При q>2 Д. г. является простой группой. Д. г. были открыты Л. Диксоном [1]. После …   Математическая энциклопедия

  • ЛИ РАЗРЕШИМАЯ ГРУППА — группа Ли, разрешимая как абстрактная группа. В дальнейшем рассматриваются вещественные или комплексные Ли р. г. Нильпотентная, в частности абелева, группа Ли разрешима. Если F={Vi} полный флаг в конечномерном векторном пространстве V(над или ),… …   Математическая энциклопедия

  • КОНЕЧНАЯ ГРУППА — группа с конечным числом элементов. Это число наз. порядком группы. Исторически К. г. послужили исходным материалом для формирования многих понятий абстрактной теории групп. Обычно говорят, что целью теории К. г. является описание, с точностью до …   Математическая энциклопедия

  • ЛИНЕЙНАЯ АЛГЕБРАИЧЕСКАЯ ГРУППА — алгебраическая группа, бирационально изоморфная алгебраич. подгруппе полной линейной группы. Алгебраич. группа Gлинейна тогда и только тогда, когда алге браич. многообразие Gаффинно, т. е. изоморфно замкнутому (в топологии Зариского)… …   Математическая энциклопедия

  • АНАЛИТИЧЕСКАЯ ГРУППА — множество G, наделенное одновременно структурой топологической группа и структурой конечномерного аналитического многообразия (над нолем k, полным относительно нек ро го нетривиального абсолютного значения).так, что отображение заданное правилом… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»