- СТАЦИОНАРНАЯ ПОДГРУППА
то же, что изотропии группа.
Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.
то же, что изотропии группа.
Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.
РИМАНОВО ПРОСТРАНСТВО ОДНОРОДНОЕ — риманово пространство ( М,g) вместе с транзитивной эффективной группой Gего движений. Пусть K стационарная подгруппа фиксированной точки Тогда многообразие Мотождествляется с факторпространством G/K с помощью биекции , а риманова метрика g… … Математическая энциклопедия
СОЛВМНОГООБРАЗИЕ — разрешимое многообразие, однородное пространство Мсвязной разрешимой группы Ли G; его можно отождествить с пространством смежных классов G/H, где Н стационарная подгруппа нек рой точки многообразия М. IIримеры: тор Т n, многообразие Ивасавы N/l… … Математическая энциклопедия
ОДНОРОДНЫЙ ВЫПУКЛЫЙ КОНУС — открытый строго выпуклый конус Vв векторном пространстве Rn, однородный относительно группы линейных преобразований таких, что (автоморфизмов конуса V). О. в. к. и наз. изоморфными, если существует изоморфизм объемлющих векторных пространств,… … Математическая энциклопедия
ЭРМИТОВО СИММЕТРИЧЕСКОЕ ПРОСТРАНСТВО — связное комплексное многообразие Мс эрмитовой структурой, каждая точка к рого является изолированной неподвижной точкой нек рой голоморфной инволютивной изометрии Sp многообразия М. Компонента единицы . группы голоморфных изометрии пространства… … Математическая энциклопедия
ИЗОТРОПИИ ГРУППА — множество Gx таких элементов заданной группы G, действующей на нек ром множестве Мкак группа преобразований, к рые оставляют неподвижной точку х. Это множество оказывается подгруппой в Gи наз. группой изотропии точки х. В этом же смысле… … Математическая энциклопедия
ИНВАРИАНТНЫЙ ОБЪЕКТ — на однородном пространстве поле геометрич. величин на однородном пространстве M=G/H группы Ли G, не меняющееся при всех преобразованиях из G. Более строгое определение И. о. состоит в следующем. Пусть локально тривиальное однородное расслоение… … Математическая энциклопедия
ФЛАГ — типа v в n мерном векторном пространстве V такой набор линейных подпространств V1, V2, ..., Vk в V размерностей соответственно n1, п 2, ..., nk, что (здесь v = (n1 ... ...,nk), 0<n1<n2<...<nk<п). Флаг типа v0=(1,2,...,n 1) наз.… … Математическая энциклопедия
ГЛОБАЛЬНО СИММЕТРИЧЕСКОЕ РИМАНОВО ПРОСТРАНСТВО — риманово многообразие М, каждая точка рк рого является изолированной неподвижной точкой нек рой ннволютивной нзометрии Sp многообразия М, т. е. есть тождественное преобразование. Пусть G компонента единицы группы изометрий пространства Ми К… … Математическая энциклопедия
ЛИ ГРУППА ПРЕОБРАЗОВАНИЙ — гладкое действие связной группы Ли Gна гладком многообразии М, т. е. гладкое (класса ) отображение . такое, что: (е единица группы G). Ли г. п., удовлетворяющая также условию: наз. эффективной. Примеры Ли г. п. Любое гладкое линейное… … Математическая энциклопедия
СВЯЗНОСТЬ — на расслоенном пространстве дифференциально геометрическая структура на гладком расслоенном пространстве со структурной группой Ли, обобщающая связности на многообразии, в частности, напр., Леви Чивита связность в римановой геометрии. Пусть… … Математическая энциклопедия