- СОПРЯЖЕННЫЙ ТРИГОНОМЕТРИЧЕСКИЙ РЯД
- к ряду
- рядЭти ряды являются соответственно действительной и мнимой частями ряда
при z=eix. Формула для частных сумм сопряженного к ряду Фурье функции j(x)тригонометрич. ряда
где - сопряженное Дирихле ядро. Если f(x) -функция ограниченной вариации на то необходимым и достаточным условием сходимости ряда в точке х 0 является существование сопряженной функции (см. п. 3) к-рая представляет тогда сумму ряда Если f(x) - суммируемая на функция, то ряд суммируется почти всюду методами и методом Абеля - Пуассона и почти всюду совпадает с сопряженной функцией f(x). Если функция суммируема, то сопряженный ряд является ее рядом Фурье. Функция может быть несуммируемой; для таких обобщений интеграла Лебега, как А-интеграл и Бокса интеграл, сопряженный ряд всегда является рядом Фурье сопряженной функции.
Лит.:[1] Тauber A., лMonatsch. Math. Phys.
Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.