СЛУЧАЙНАЯ ФУНКЦИЯ

СЛУЧАЙНАЯ ФУНКЦИЯ

- функция произвольного аргумента t(заданная на множестве Тего значений и принимающая числовые значения или, более общо, значения из какого-то векторного пространства) такая, что ее значения определяются с помощью нек-ро-го испытания и в зависимости от его исхода могут быть различными, причем для них существует определенное распределение вероятностей. В теории вероятностей основное внимание обычно уделяется числовым (т. е. скалярным) С. ф. X(t);векторные же С. ф. X(t)можно рассматривать как совокупность скалярных функций где пробегает конечное или счетное множество Аномеров компонент вектора X, т. е. как числовую С. <ф., заданную на новом множестве
Если множество Тконечно, то С. ф. X(t)на Тпредставляет собой конечный набор случайных величин, к-рый можно считать одной многомерной (векторной) случайной величиной, характеризуемой многомерной функцией распределения. Из числа С. ф. с бесконечным . наиболее изучен частный случай, когда tпринимает числовые (действительные) значения; в этом случае чаще всего tявляется временем, а С. ф. X(t) наз. случайным процессом (если же время . пробегает лишь целочисленные значения, то также и случайной последовательностью, или временным рядом). Если значениями аргумента tявляются точки нек-рого многомерного многообразия (напр., k-мерного евклидова пространства Rk), то С. ф. X(t)наз. случайным полем.
Распределение вероятностей значений С. ф. X(t), определенной на бесконечном множестве Т, можно охарактеризовать совокупностью конечномерных распределений вероятностей для групп случайных величин отвечающих всевозможным
конечным подмножествам элементов Т, т. е. совокупностью соответствующих конечномерных функций распределения удовлетворяющих следующим условиям согласованности:

где i1, . . ., in- произвольная перестановка индексов 1, . . ., n. Такое задание распределения вероятностей С. ф. X(t)достаточно во всех случаях, когда интересуются лишь событиями, зависящими от значений X(t)на конечных множествах значений аргумента t. Однако такое задание С. ф. не позволяет определить вероятности свойств С. ф., зависящих от ее значений на непрерывном множестве значений t, типа вероятности непрерывности или дифференцируемости С. ф. или вероятности того, что С. ф. X(t)на непрерывном множестве значений tбудет удовлетворять неравенству X(t)<a (см. Сепарабельный процесс).
Более общее задание С. ф. связано с ее описанием как совокупности случайных величин заданных на одном и том же вероятностном пространстве (где - непустое множество точек - выделенная алгебра подмножеств а Р - заданная а вероятностная мера) и отвечающих всевозможным точкам tмножества Т. При таком подходе под С. ф. на множестве Тследует понимать функцию двух переменных и являющуюся A-измеримой функцией при каждом фиксированном значении t(т. е. при фиксированном . обращающуюся в случайную величину, определенную на вероятностном пространстве Фиксируя значение аргумента функции получают числовую функцию на Т, называемую реализацией (или выборочной функцией, или, если t- это время, траекторией) С. ф. X(t); -алгебра и мера Р при этом индуцируют -алгебру подмножеств и определенную на ной вероятностную меру в функциональном пространстве реализацией x(t), задание к-рой также можно считать эквивалентным заданию С. ф. Задание С. ф. как вероятностной меры, определенной на -алгебре подмножеств функционального пространства всевозможных реализаций x(t), можно рассматривать как частный случай общего задания С. ф. как функции двух переменных (где принадлежит вероятностному пространству соответствующий условию, что т. е. что элементарные события (точки исходного вероятностного пространства) с самого начала отождествляются с реализациями х(t)С. ф. X(t);с другой стороны, можно также показать, что к такому заданию С. ф. с помощью указания вероятностной меры на сводятся и все другие способы задания С. ф. X(t). В частности, задание совокупности всевозможных конечномерных функций распределения удовлетворяющих условиям согласованности (1) и (2), в силу фундаментальной теоремы Колмогорова о согласованных распределениях (см. Вероятностное пространство), определяет вероятностную меру на -алгебре подмножеств функционального пространства порожденной совокупностью цилиндрич. множеств вида где п - произвольное целое положительное число, а В" - произвольное борелевское множество n-мерного пространства векторов

Лит. см. при ст. Случайный процесс.
А. М. Яглом.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "СЛУЧАЙНАЯ ФУНКЦИЯ" в других словарях:

  • СЛУЧАЙНАЯ ФУНКЦИЯ — функция произвольного аргумента такая, что ее значения определяются случайным исходом некоторого испытания, причем для них существует определенное распределение вероятностей. Понятие случайной функции весьма близко понятию случайного процесса …   Большой Энциклопедический словарь

  • СЛУЧАЙНАЯ ФУНКЦИЯ — функция 2 х аргументов X(t) = X(ω,t); множество элементарных событий, произвольное множество. Если в вещественное множество и параметр t интерпретировать как время, то X(t) называется случайным процессом. Аппарат С. ф. широко используется… …   Геологическая энциклопедия

  • Случайная функция — [ran­dom function] “функция X(t) произвольного аргумента (t), t ∈ T, значения которой при любом t являются случайной величиной с определенным распределением вероятностей” (МЭС, стр. 547). Если t принимает числовые значения, которые… …   Экономико-математический словарь

  • случайная функция — “функция X(t) произвольного аргумента (t), t ? T, значения которой при любом t являются случайной величиной с определенным распределением вероятностей” (МЭС, стр. 547). Если t принимает числовые значения, которые интерпретируются как время, имеем …   Справочник технического переводчика

  • СЛУЧАЙНАЯ ФУНКЦИЯ — на множестве Т семейство случайныхвеличин , помеченных элементами множества Т (наз. областью определенияС. ф.) и заданных на одном и том же вероятностном пространстве }.Напр., при n кратном бросании монеты, когда пространство состоит из 2n… …   Физическая энциклопедия

  • случайная функция — функция произвольного аргумента, такая, что её значения определяются случайным исходом некоторого испытания, причём для них существует определенное распределение вероятностей. Понятие случайной функции весьма близко понятию случайного процесса. * …   Энциклопедический словарь

  • случайная функция — atsitiktinė funkcija statusas T sritis automatika atitikmenys: angl. random function vok. Zufallsfunktion, f rus. случайная функция, f pranc. fonction aléatoire, f …   Automatikos terminų žodynas

  • Случайная функция —         функция произвольного аргумента t (заданная на множестве Т его значений и сама принимающая или числовые значения или, более общо, значения из какого то векторного пространства) такая, что её значения определяются с помощью некоторого… …   Большая советская энциклопедия

  • СЛУЧАЙНАЯ ФУНКЦИЯ — функция произвольного аргумента, такая, что её значения определяются случайным исходом нек рого испытания, причём для них существует определ. распределение вероятностей. Понятие С. ф. весьма близко понятию случайного процесса …   Естествознание. Энциклопедический словарь

  • Случайная функция — …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»