СИМПЛЕКТИЧЕСКОЕ ПРОСТРАНСТВО

СИМПЛЕКТИЧЕСКОЕ ПРОСТРАНСТВО

нечетномерное проективное пространство P2n+1 над полем kс заданной в нем инволюционной корреляцией - нульсистемой; обозначается Sp2n+1.

Пусть характеристика поля kни равна 2. Абсолютная нульгсистема в Sp2n+1 всегда может быть записана в виде ui=aijxj, где ||aij|| - кососимметрич. матрица (aij=-aji). В векторной форме абсолютная нуль-система может быть записана в виде иx, где А - ко-сосимметрич. оператор, матрица к-рого надлежащим выбором базиса приводится к виду


В этом случае абсолютная нуль-система принимает канонич. вид:


Абсолютная нуль-система порождает билинейную форму, к-рая записывается в канонич. виде:


Коллинеации пространства Sp2n+1, перестановочные с его нуль-системой, наз. симплектическими преобразованиями; операторы, определяющие эти коллинеации,- симплектическими. Для указанной выше канонич. формы матрицы ||A|| определяется (2n+2)-матрица симплектич. оператора U, элементы к-рой удовлетворяют условиям


где da,b - символ Кронекера, а матрица такого оператора Uназ. симплектической; ее определитель равен единице. Симплектич. преобразования образуют группу, являющуюся группой Ли.

Всякая точка пространства Sp2n+1 лежит в (2п-1) плоскости, соответствующей ей в абсолютной нуль-системе. Можно определить также и нулевые m-плоскости в Sp2n+1. Многообразие нулевых прямых пространства Sp2n+1 наз. его абсолютным линейным комплексом. В связи с этим симплектич. группа наз. также группой линейного комплекса, или комплекс-группой.

Всякая пара прямых и соответствующих в нуль-системе двух (2n-1)-плоскостей определяют единственный в пространстве Sp2n+1 симплектич. инвариант относительно группы симплектич. преобразований этого пространства. Через каждую точку обеих прямых проходит трансверсаль этих прямых и (2n-1)-плоскостей так, что определяет проективные четверки точек. Это составляет геометрический смысл симплектического инварианта, который утверждает равенство двойных отношений получаемых четверок точек.

Симплектич. 3-пространство допускает интерпретацию в гиперболич. пространстве, что указывает, в частности, на связь симплектич. пространств с гиперболическими. Так, группа симплектич. преобразований пространства Sp3 изоморфна группе движений гиперболич. пространства 2S4. В этой интерпретации симплектич. инвариант связан с расстоянием между точками гиперболич. пространства.

Лит.; [1] Розенфельд Б. А., Неевклидовы пространства, М., 1969. Л. А. Сидоров.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем решить контрольную работу

Полезное


Смотреть что такое "СИМПЛЕКТИЧЕСКОЕ ПРОСТРАНСТВО" в других словарях:

  • Симплектическое пространство — Симплектическое пространство  это векторное пространство S с заданной на нём симплектической формой , то есть билинейной кососимметрической невырожденной 2 формой …   Википедия

  • СИМПЛЕКТИЧЕСКОЕ ПРОСТРАНСТВО ОДНОРОДНОЕ — симплектическое многообразие (М, w) вместе с транзитивной группой Ли G его автоморфизмов. Элементы алгебры Ли группы G можно рассматривать как симплектические векторные поля на М, т. е. поля X, сохраняющие симплектическую 2 форму w: где точкой… …   Математическая энциклопедия

  • Симплектическое многообразие — Симплектическое многообразие  это многообразие с заданной на нём симплектической формой, то есть замкнутой невырожденной 2 формой. Симплектическое многообразие позволяет естественным геометрическим образом ввести гамильтонову механику и даёт …   Википедия

  • СИМПЛЕКТИЧЕСКОЕ МНОГООБРАЗИЕ — многообразие, снабжённое симплектической структурой. С. м. играют фундам. роль в классич., статистич. и квантовой механике …   Физическая энциклопедия

  • ПРОСТРАНСТВО НАД АЛГЕБРОЙ — пространство, обладающее дифференциально геометрической структурой, точки к рого могут быть снабжены координатами из нек рой алгебры. В большинстве случаев алгебра предполагается ассоциативной с единицей, иногда альтернативной с единицей (см.… …   Математическая энциклопедия

  • ОДНОРОДНОЕ ПРОСТРАНСТВО — множество вместе с заданным на нем транзитивным действием нек рой группы. Точнее, Месть однородное пространство группы G, если задано отображение множества в Мтакое, что: 1) 2) 3)для любых существует такой что Элементы множества Мназ. точками О.… …   Математическая энциклопедия

  • Косоортогональное дополнение — Симплектическое пространство это линейное пространство S с заданной на нём симплектической формой ω, то есть билинейной кососимметрической невырожденной 2 формой …   Википедия

  • Гамильтонова механика —     Классическая механика …   Википедия

  • Уравнения Гамильтона — (также называемые каноническими уравнениями) в физике и математике  система дифференциальных уравнений: где точкой над p и q обозначена производная по времени. Система состоит из 2N дифференциальных уравнений первого порядка (j = 1, 2, …, N) …   Википедия

  • СИМПЛЕКТИЧЕСКАЯ СТРУКТУРА — замкнутая невырожденная дифференциальнаяформа степени 2. Многообразие, снабжённое С. с., наз. симплектическиммногообразием. В каждом касательном пространстве С. с. задаёт кососкалярноепроизведение (см. в ст. Симплектическая группа). Кососкалярное …   Физическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»