РАСПРЕДЕЛЕНИИ СХОДИМОСТЬ

РАСПРЕДЕЛЕНИИ СХОДИМОСТЬ

в основном слабая сходимость и сходимость по вариации, определяемые следующим образом. Последовательность распределений (вероятностных мер) { Р п}. на борелевских множествах метрич. пространства Sназ. с л а б о с х о д я щ е й с я к р а с п р е д е л е н и ю Р, если


для любой действительной ограниченной непрерывной функции f на S. Слабая сходимость является основным типом сходимости, рассматриваемым в теории вероятностей. Обозначают ее обычно знаком . Следующие условия равносильны слабой сходимости:

1) соотношение (*) выполняется для любой ограниченной равномерно непрерывной действительной функции f;

2) соотношение (*) выполняется для любой ограниченной непрерывной Р-почти всюду действительной функции f;

3)

для любого замкнутого множества FМS;

4)

для любого открытого множества GМS;

5)

для любого борелевского множества AМSтакого, что , где - граница А;

6)

где ресть Леви - Прохорова метрика.

Пусть U- замкнутый относительно пересечений класс подмножеств Sтакой, что всякое открытое множество из Sесть конечное или счетное объединение множеств из U. Тогда если при всех , то . Если - функции распределения, отвечающие Р n и Рсоответственно, то тогда и только тогда, когда в каждой точке хнепрерывности функции F

Пусть пространство Sсепарабельно и - класс ограниченных борелевских действительных функций на S. Для того чтобы равномерно по для всякой последовательност { Р n}такой, что , необходимо и достаточно, чтобы:

а)

б) где


и где Sx,e- открытый шар радиуса e с центром в х. Если класс образован индикаторами множеств из нек-рого класса Е, то условия а) и б) сводятся к условию


где


(когда всякий открытый шар в Sсвязен,

. Если и распределение Р абсолютно непрерывно по мере Лебега, то тогда и только тогда, когда равномерно по всем борелевским выпуклым множествам А.

Пусть Р п, Р -- распределения на метрич. пространстве и h - непрерывное Р-почти всюду измеримое отображение Sв метрич. пространство ; тогда , где для любого распределения Qна Sраспределение Qh -1 есть его h-образ на :

для любого борелевского

Семейство распределений на Sназ. с л а б о о т н о с и т е л ь н о к о м п а к т н ы м, если всякая последовательность его элементов содержит слабо сходящуюся подпоследовательность. Условие слабой относительной компактности дает теорема Прохорова. Семейство наз. п л о т н ы м, если существует компакт KМS такой, что . Т е о р е м а П р о х о р о в а: если плотно, то оно относительно компактно, а если Sсепарабельно и полно, то слабая относительная компактность влечет его плотность. В случае, когда , семейство распределений слабо относительно компактно тогда и только тогда, когда соответствующее семейство характеристич. функций равностепенно непрерывно в нуле.

Пусть теперь Р n, Р - распределения на измеримом пространстве (X, А), где Аесть s-алгебра. Под с х о-д и м о с т ь ю по в а р и а ц и и Р n к Р понимают равномерную сходимость по всем множествам из Аили, что равносильно, стремление вариации


к нулю; здесь и - компоненты разложения Жордана - Хана обобщенной меры Р п --Р.

Лит.:[1] Б и л л и н г с л и П., Сходимость вероятностных мер, пер. с англ., М., 1977; [2] Л о э в М., Теория вероятностей, пер. с англ., М.. 1962; [3] Б х а т т а ч а р и я Р. Н., Р. Р а н г а Р а о, Аппроксимация нормальным распределением и асимптотические разложения, пер. англ., 1982. В. В. Сазонов.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "РАСПРЕДЕЛЕНИИ СХОДИМОСТЬ" в других словарях:

  • ГОСТ Р 50779.10-2000: Статистические методы. Вероятность и основы статистики. Термины и определения — Терминология ГОСТ Р 50779.10 2000: Статистические методы. Вероятность и основы статистики. Термины и определения оригинал документа: 2.3. (генеральная) совокупность Множество всех рассматриваемых единиц. Примечание Для случайной величины… …   Словарь-справочник терминов нормативно-технической документации

  • СССР. Естественные науки —         Математика          Научные исследования в области математики начали проводиться в России с 18 в., когда членами Петербургской АН стали Л. Эйлер, Д. Бернулли и другие западноевропейские учёные. По замыслу Петра I академики иностранцы… …   Большая советская энциклопедия

  • ФУНКЦИЙ ТЕОРИЯ — раздел математики, занимающийся изучением свойств различных функций. Теория функций распадается на две области: теорию функций действительного переменного и теорию функций комплексного переменного, различие между которыми настолько велико, что… …   Энциклопедия Кольера

  • Лебедев, Вячеслав Иванович — В Википедии есть статьи о других людях с именем Лебедев, Вячеслав. Вячеслав Иванович Лебедев Дата рождения: 27 января 1930(1930 01 27) Ме …   Википедия

  • МЕРА — множества, обобщение понятия длины отрезка, площади фигуры, объема тела, интуитивно соответствующее массе множества при нек ром распределении массы по пространству. Понятие М. множества возникло в теории функций действительного переменного в… …   Математическая энциклопедия

  • НЕПАРАМЕТРИЧЕСКИЕ МЕТОДЫ СТАТИСТИКИ — методы математич. статистики, не предполагающие знания функционального вида генеральных распределений. Название непараметрические методы подчеркивает их отличие от классических параметрических методов, в к рых предполагается, что генеральное… …   Математическая энциклопедия

  • Коэффициент корреляции — (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… …   Энциклопедия инвестора

  • МЕТРОЛОГИЯ ХИМИЧЕСКОГО АНАЛИЗА — (от греч. metron мера и logos слово, учение), учение о мат. обработке результатов хим. анализа. Осн. особенность аналит. определений состоит в том, что их результат зависит от общего хим. состава и физ. св в анализируемого объекта (т. наз.… …   Химическая энциклопедия

  • ИНТЕРПОЛИРОВАНИЕ — интерполяция, в простейшем, классическом смысле конструктивное восстановление (быть может, приближенное) функции определенного класса по известным ее значениям или значениям ее производных в данных точках. Пусть даны n+l точек сегмента D=[ а, b] …   Математическая энциклопедия

  • ЧЕБЫШЕВСКИЙ ИТЕРАЦИОННЫЙ МЕТОД — итерационный алгоритм нахождения решения линейного уравнения учитывающий информацию о принадлежности Sр(A) спектра оператора А нек рому множеству и использующий свойства и параметры многочленов, наименее отклоняющихся от нуля на множестве и… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»