РАВНОСХОДЯЩИЕСЯ РЯДЫ

РАВНОСХОДЯЩИЕСЯ РЯДЫ

такие сходящиеся или расходящиеся числовые ряды а п и , разность к-рых является сходящимся рядом с суммой, равной нулю: . Если же их разность является лишь сходящимся рядом, то исходные ряды наз. равносходящимися в широком смысле.

Если а п п (х)и b п=b п (х).- функции, напр. а n: , b п: , где X - произвольное множество, а - множество действительных чисел, то ряды

и наз. равномерно равносходящимися (равномерно равносходящимися в широком смысле) на множестве X, если их разность есть ряд, к-рый равномерно сходится на Xи его сумма равна нулю (соответственно просто равномерно сходится на X).

Пример. Если две интегрируемые на отрезке [-p, p] функции равны на интервале , то их ряды Фурье - равномерно равносходящиеся на каждом интервале I*, внутреннем к интервалу I, а сопряженные ряды Фурье - равномерно равносходящиеся на I* в широком смысле. Л. Д. Кудрявцев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем написать реферат

Смотреть что такое "РАВНОСХОДЯЩИЕСЯ РЯДЫ" в других словарях:

  • ФУРЬЕ РЯД — по ортогональным многочленам ряд вида где многочлены { Р п (х)} ортонормированы на интервале ( а, b )с весом h(х)(см. Ортогональные многочлены),а коэффициенты { а n} вычисляются но формуле причем функция f(x) входит в класс функций L2=L2[a, b, h… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»