ПОДГРУППА


ПОДГРУППА

- подмножество Н группы G, само являющееся группой относительно операции, определяющей G. Подмножество Нгруппы Gявляется ее подгруппой тогда и только тогда, когда: (1) H содержит произведение любых двух элементов из H, (2) H содержит вместе со всяким своим элементом hобратный к нему элемент h-1. В случае конечных и, вообще, периодич. групп проверка условия (2) является излишней.

Подмножество группы G, состоящее из одного элемента 1, будет, очевидно, подгруппой, и эта П. наз. единичной П. группы G и обозначается обычно символом Е. Сама G также является своей П. Всякая П., отличная от всей группы, наз. истинной П. этой группы. Истинная П. нек-рой бесконечной группы может быть изоморфна самой группе. Сама группа G и подгруппа Еназ. несобственными П. группы G, все остальные - собственными.

Теоретико-множественное пересечение любых двух (и любого множества) П. группы G является П. группы G. Пересечение всех П. группы G, содержащих все элементы нек-рого непустого множества М, наз. подгруппой, порожденной множеством М, и обозначается символом {М}. Если Мсостоит из одного элемента а, то {а} наз. циклической П. элемента а. Группа, совпадающая с одной из своих циклических П., наз. циклической группой.

Теоретико-множественное объединение П., вообще говоря, не обязано являться П. Объединением подгрупп , наз. П., порожденная объединением множеств Hi.

Произведение подмножеств S1 и S2 группы G есть множество, состоящее из всевозможных (различных) произведений s1s2, где , . Произведение подгрупп Н 1 Н 2 есть П. тогда и только тогда, когда H1H2=H2H1, и в этом случае произведение Н 1 Н 2 совпадает с объединением подгрупп Н 1 и H2.

Гомоморфный образ П.- подгруппа. Если группа G1 изоморфна нек-рой подгруппе H группы G, то говорят, что группа G1 может быть вложена в группу G. Если даны две группы и каждая из них изоморфна нек-рой истинной П. другой, то отсюда еще не следует изоморфизм самих этих групп. О. А. Иванова.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Синонимы:

Смотреть что такое "ПОДГРУППА" в других словарях:

  • подгруппа — подблок, субблок; субгруппа, группа Словарь русских синонимов. подгруппа сущ., кол во синонимов: 2 • группа (98) • …   Словарь синонимов

  • ПОДГРУППА — ПОДГРУППА, подгруппы, жен. Подразделение группы, часть группы. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • ПОДГРУППА — ПОДГРУППА, ы, жен. Подразделение внутри группы. | прил. подгрупповой, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • ПОДГРУППА — англ. sub group; нем. Subgruppe. Часть группы, выполняющая либо свои собственные функции, либо функции группы в целом. П. может способствовать функционированию и поддерживанию группы либо ее дезорганизации и разрушению. Antinazi. Энциклопедия… …   Энциклопедия социологии

  • подгруппа — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN subgroup …   Справочник технического переводчика

  • подгруппа — 3.14. подгруппа: Одно или более наблюденных значений признака, используемых для анализа возможностей процесса. Примечания 1. Подгруппу, собранную таким образом, чтобы обеспечить максимальное подобие данных в каждой подгруппе и максимальное… …   Словарь-справочник терминов нормативно-технической документации

  • Подгруппа — Группа (математика) Теория групп …   Википедия

  • подгруппа — pogrupis statusas T sritis chemija apibrėžtis Periodinės elementų sistemos grupės dalis, susidedanti iš elementų, kurių valentinių elektronų šalutiniai kvantiniai skaičiai vienodi. atitikmenys: angl. subgroup rus. подгруппа …   Chemijos terminų aiškinamasis žodynas

  • подгруппа — pogrupis statusas T sritis fizika atitikmenys: angl. subgroup vok. Untergruppe, f rus. подгруппа, f pranc. sous groupe, m …   Fizikos terminų žodynas

  • подгруппа — pogrupis statusas T sritis Kūno kultūra ir sportas apibrėžtis Smulkesnis už grupę vienetas, pvz., grupės dalis, daranti kurį nors fizinį pratimą pratybose. atitikmenys: angl. subgroup vok. Gruppe, f; Vorrunde, f rus. подгруппа …   Sporto terminų žodynas

Книги

  • Подгруппа железа, Джесси Рассел. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. High Quality Content by WIKIPEDIA articles! Подгру?ппа желе?за — химические элементы 8-й группы… Подробнее  Купить за 1125 руб
  • Подгруппа меди, Джесси Рассел. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. High Quality Content by WIKIPEDIA articles! Подгру?ппа ме?ди — химические элементы 11-й группы… Подробнее  Купить за 998 руб
  • Подгруппа ванадия, Джесси Рассел. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. High Quality Content by WIKIPEDIA articles! Подгру?ппа вана?дия — химические элементы 5-й группы… Подробнее  Купить за 998 руб
Другие книги по запросу «ПОДГРУППА» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.