БАНАХА - ШТЕЙНХАУЗА ТЕОРЕМА

БАНАХА - ШТЕЙНХАУЗА ТЕОРЕМА

общее название ряда результатов о топологич. свойствах пространства непрерывных линейных отображений одного линейного топологич. пространства в другое. Пусть , F - локально выпуклые линейные топологич. пространства, где - бочечное пространство, или - линейные топологич. пространства, причем - Бэра пространство;тогда: 1) любое ограниченное в топологии простой сходимости подмножество пространства непрерывных линейных отображений пространства в равностепенно непрерывно (принцип равномерной ограниченности), 2) если фильтр в пространстве содержит множество, ограниченное в топологии простой сходимости, и сходится в топологии простой сходимости к нек-рому отображению vпространства в , то - непрерывное линейное отображение в , и фильтр сходится к равномерно на каждом компактном подмножестве пространства Е(см. [2, 3]).

Этот общий результат позволяет уточнить классич. результаты С. Банаха и X. Штейнхауза (см. [1]): пусть - банаховы пространства, - подмножество второй категории в Е;тогда: 1) если и конечен для всех , то если - последовательность непрерывных линейных отображений в и последовательность сходится в для всех , то сходится к непрерывному линейному отображению пространства в равномерно на любом компактном подмножестве пространства .

Лит.:[1] Banach S., Steinhaus H., "Fundam. math.", 1927, t. 9, p. 50-61; [2] Бурбаки Н., Топологические векторные пространства, пер. с франц., М., 1959; [3] Шефер X., Топологические векторные пространства, пер. с англ., М., 1971. А. И. Штерн.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "БАНАХА - ШТЕЙНХАУЗА ТЕОРЕМА" в других словарях:

  • ФРЕШЕ ПРОСТРАНСТВО — полное метризуемое локально выпуклое топологическое векторное пространство. Банаховы пространства доставляют примеры Ф. п., однако многие важные функциональные пространства являются Ф. п., не являясь вместе с тем банаховыми. IV числу таковых… …   Математическая энциклопедия

  • БОЧЕЧНОЕ ПРОСТРАНСТВО — локально выпуклое линейное топология, пространство, обладающее рядом свойств банаховых пространств и Фреше пространств без предположения о метризуемости; это один из наиболее широких классов пространств, в к рых справедлива Банаха Штейнхауза… …   Математическая энциклопедия

  • ПРИБЛИЖЕНИЕ ФУНКЦИЙ — линейные методы приближения методы приближения, определяемые линейными операторами. Если в линейном нормированном пространстве функций Xв качестве приближающего множества выбрано линейное многообразие , то любой линейный оператор U,… …   Математическая энциклопедия

  • ЛИНЕЙНЫЙ ОПЕРАТОР — линейное преобразование, отображение между двумя векторными пространствами, согласованное с их линейными структурами. Точнее, отображение где Еи F векторные пространства над полем k, наз. л и н е й н ы м оператором из Ев F, если при всех… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»