ГРУППА — множество, на к ром определена операция, наз. умножением и удовлетворяющая спец. условиям (групповым аксиомам): в Г. существует единичный элемент; для каждого элемента Г. существует обратный; операция умножения ассоциативна. Понятие Г. возникло… … Физическая энциклопедия
ОДНОСВЯЗНАЯ ОБЛАСТЬ — линейно связного пространства область D, в к рой все замкнутые пути гомотопны нулю или, иначе говоря, фундаментальная группа к рой тривиальна. Это означает, что любой замкнутый путь в Dможно непрерывно деформировать в точку, оставаясь все время в … Математическая энциклопедия
ЛИ ПОЛУПРОСТАЯ ГРУППА — связная группа Ли, не содержащая нетривиальных связных разрешимых (или, что равносильно, связных абелевых) нормальных делителей. Связная группа Ли пелупроста тогда и только тогда, когда ее алгебра Ли полупроста. Связная группа Ли Gназ. п р о с т… … Математическая энциклопедия
ЛИ ГРУППА — группа G, обладающая такой структурой аналитического многообразия, что отображение прямого произведения в Gана литично. Другими словами, Ли г. это множество, наделенное согласованными структурами группы и аналитич. многообразия. Ли г. наз.… … Математическая энциклопедия
ЛИ РАЗРЕШИМАЯ ГРУППА — группа Ли, разрешимая как абстрактная группа. В дальнейшем рассматриваются вещественные или комплексные Ли р. г. Нильпотентная, в частности абелева, группа Ли разрешима. Если F={Vi} полный флаг в конечномерном векторном пространстве V(над или ),… … Математическая энциклопедия
ЛИ НИЛЬПОТЕНТНАЯ ГРУППА — группа Ли, пильпотентная как абстрактная группа. Абелева группа Ли нильпотентна. Если флаг в конечномерном векторном пространстве Vнад полем К, то будет нильпотентной алгебраич. группой над А; в базисе, согласованном с флагом F, ее элементы… … Математическая энциклопедия
СПИНОРНАЯ ГРУППА — невырожденной квадратичной формы Qна п мерном векторном пространстве Vнад полем k связная линейная алгебраич. группа, являющаяся универсальной накрывающей неприводимой компоненты единицы ортогональной группы On(Q)формы Q. Если char то группа… … Математическая энциклопедия
ЛИ КОМПАКТНАЯ ГРУППА — компактная группа, являющаяся конечномерной вещественной группой Ли. Ли к. г. могут быть охарактеризованы как конечномерные локально связные компактные топологич. группы. Если G0 связная компонента единицы Ли к. г. С, то группа связных компонент… … Математическая энциклопедия
КОМПАКТНАЯ ГРУППА — топологическая группа, компактная как топологич. пространство. Напр., всякая конечная группа (в дискретной топологии) является К. г. Алгебраическая группа, хотя она и является компактным топологич. пространством (относительно топологии Зариского) … Математическая энциклопедия
СИМПЛЕКТИЧЕСКАЯ ГРУППА — одна из классических групп, определяемая как группа автоморфизмов знакопеременной билинейной формы Ф на левом К модуле Е, где К коммутативное кольцо. В случае, когда Е=К 2т и матрица формы Ф в канонич. базисе {е i} модуля Еимеет вид где I т… … Математическая энциклопедия