ОДНОСВЯЗНАЯ ГРУППА

ОДНОСВЯЗНАЯ ГРУППА

- топологическая группа (группа Ли, в частности), топологич. пространство к-рой односвязно. Значение О. г. в теории групп Ли объясняется следующими теоремами:

1) всякая связная группа Ли G изоморфна факторгруппе нек-рой О. г. (называемой универсальной накрывающей группы G) по дискретной центральной подгруппе, изоморфной p1(G);

2) две О. г. Ли изоморфны тогда и только тогда, когда изоморфны их алгебры Ли; более того, всякий гомоморфизм алгебры Ли О. г. G1 в алгебру Ли произвольной группы Ли G2 является дифференциалом; (однозначно определенного) гомоморфизма Gx в G2 .

Центр Zодносвязной полупростой компактной ила комплексной группы Ли G конечен. Для различных, типов простых групп Ли он приведен в таблице:

В теории алгебраических групп О. г. наз. связную-алгебраич. группу G, не допускающую нетривиальных изогений- также связная алгебраич. группа. Для полупростых алгебраич. групп над полем комплексных чисел это определение равносильно данному выше.

Э. Б. Винберг.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем сделать НИР

Смотреть что такое "ОДНОСВЯЗНАЯ ГРУППА" в других словарях:

  • ГРУППА — множество, на к ром определена операция, наз. умножением и удовлетворяющая спец. условиям (групповым аксиомам): в Г. существует единичный элемент; для каждого элемента Г. существует обратный; операция умножения ассоциативна. Понятие Г. возникло… …   Физическая энциклопедия

  • ОДНОСВЯЗНАЯ ОБЛАСТЬ — линейно связного пространства область D, в к рой все замкнутые пути гомотопны нулю или, иначе говоря, фундаментальная группа к рой тривиальна. Это означает, что любой замкнутый путь в Dможно непрерывно деформировать в точку, оставаясь все время в …   Математическая энциклопедия

  • ЛИ ПОЛУПРОСТАЯ ГРУППА — связная группа Ли, не содержащая нетривиальных связных разрешимых (или, что равносильно, связных абелевых) нормальных делителей. Связная группа Ли пелупроста тогда и только тогда, когда ее алгебра Ли полупроста. Связная группа Ли Gназ. п р о с т… …   Математическая энциклопедия

  • ЛИ ГРУППА — группа G, обладающая такой структурой аналитического многообразия, что отображение прямого произведения в Gана литично. Другими словами, Ли г. это множество, наделенное согласованными структурами группы и аналитич. многообразия. Ли г. наз.… …   Математическая энциклопедия

  • ЛИ РАЗРЕШИМАЯ ГРУППА — группа Ли, разрешимая как абстрактная группа. В дальнейшем рассматриваются вещественные или комплексные Ли р. г. Нильпотентная, в частности абелева, группа Ли разрешима. Если F={Vi} полный флаг в конечномерном векторном пространстве V(над или ),… …   Математическая энциклопедия

  • ЛИ НИЛЬПОТЕНТНАЯ ГРУППА — группа Ли, пильпотентная как абстрактная группа. Абелева группа Ли нильпотентна. Если флаг в конечномерном векторном пространстве Vнад полем К, то будет нильпотентной алгебраич. группой над А; в базисе, согласованном с флагом F, ее элементы… …   Математическая энциклопедия

  • СПИНОРНАЯ ГРУППА — невырожденной квадратичной формы Qна п мерном векторном пространстве Vнад полем k связная линейная алгебраич. группа, являющаяся универсальной накрывающей неприводимой компоненты единицы ортогональной группы On(Q)формы Q. Если char то группа… …   Математическая энциклопедия

  • ЛИ КОМПАКТНАЯ ГРУППА — компактная группа, являющаяся конечномерной вещественной группой Ли. Ли к. г. могут быть охарактеризованы как конечномерные локально связные компактные топологич. группы. Если G0 связная компонента единицы Ли к. г. С, то группа связных компонент… …   Математическая энциклопедия

  • КОМПАКТНАЯ ГРУППА — топологическая группа, компактная как топологич. пространство. Напр., всякая конечная группа (в дискретной топологии) является К. г. Алгебраическая группа, хотя она и является компактным топологич. пространством (относительно топологии Зариского) …   Математическая энциклопедия

  • СИМПЛЕКТИЧЕСКАЯ ГРУППА — одна из классических групп, определяемая как группа автоморфизмов знакопеременной билинейной формы Ф на левом К модуле Е, где К коммутативное кольцо. В случае, когда Е=К 2т и матрица формы Ф в канонич. базисе {е i} модуля Еимеет вид где I т… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»