СИМПЛЕКТИЧЕСКАЯ ГРУППА


СИМПЛЕКТИЧЕСКАЯ ГРУППА

одна из классических групп, определяемая как группа автоморфизмов знакопеременной билинейной формы Ф на левом К-модуле Е, где К - коммутативное кольцо. В случае, когда Е=К и матрица формы Ф в канонич. базисе i} модуля Еимеет вид


где I т- единичная матрица порядка т, соответствующая С. г. называется С. г. от переменных над кольцом Ки обозначается Sp(m, К).или Sp2m(K). Матрица любого автоморфизма из Sp2m(K) в базисе i} наз. симплектической матрицей. Пусть К - поле и Ф - невырожденная знакопеременная билинейная форма в n-мерном векторном пространстве Енад К. Тогда пчетно, ассоциированная с формой Ф С. г., изоморфная группе Sр n(K), порождается всевозможными линейными преобразованиями пространства Евида se,a,


где . Линейные преобразования вида se,a наз. симплектическими трансвекциями, или сдвигами, в направлении прямой Ке. Центр Z группы Sр n(K) состоит из матриц In и - In, если char ; если же char K=2, то Z={I п}. Факторгруппа Spn(K)/Z наз. проективной симплектической группой и обозначается РSр n(K). Все проективные С. г. просты за исключением


к-рые изоморфны соответственно симметрич. группам S3 и S6 и знакопеременной группе A4 (через Fq обозначено поле из qэлементов). Порядок С. г. Sp2m (Fq).равен


С. г. Sр 2(K) совпадает со специальной линейной группой SL2 (К);если char , то группа PSp4 (К).изоморфна факторгруппе группы W5(K, f) по ее центру (где W5(K, f) - коммутант ортогональной группы симметрической билинейной формы f от пяти переменных индекса 2).

За исключением случая т=2,char K=2, всякий автоморфизм j группы Sp2m (К).может быть представлен в виде


где t - автоморфизм поля и h2 - ли-

нейное преобразование пространства Е, представляющееся в базисе i} матрицей вида


(b - ненулевой элемент поля К).

С. г. Sр 2m (К).совпадает с группой K-точек линейной алгебраич. группы Sp2m, задаваемой уравнением . Эта алгебраич. группа, тоже называемая С. г., является простой односвязной линейной алгебраич. группой типа С m, ее размерность равна 2+т.

В случае, когда или , С. г. Sp2m (К).есть связная односвязная простая комплексная (соответственно вещественная) группа Ли. Группа является одной из вещественных форм комплексной С. г. . Остальные вещественные формы этой группы тоже иногда называют С. г. Это - подгруппы

, выделяемые из группы условием сохранения эрмитовой формы вида


где ei=1 при и и ei=-1 при остальных i. Группа Sp (0, т) - компактная вещественная форма комплексной С. г. . С. г. Sp(p, q).изоморфна группе всех линейных преобразований правого векторного пространства над телом кватернионов размерности т=р+q, к-рые сохраняют кватернионную эрмитову форму индекса min(p, q), то есть форму вида


где


а черта означает переход к сопряженному кватерниону.

Лит.:[l] Apтин Э., Геометрическая алгебра, пер. с англ., М., 1969; [2] Бурбаки Н., Алгебра. Модули, кольца, формы, пер. с франц., М., 1966; [3] Дьёдонне Ж., Геометрия классических групп, пер. с франц., М., 1974; [4] Xелгасон С., Дифференциальная геометрия и симметрические пространства, пер. с англ., М., 1964; [5] Шевалле К., Теория групп Ли, пер. с англ., т. 1, М., 1948. В. Л. Попов.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "СИМПЛЕКТИЧЕСКАЯ ГРУППА" в других словарях:

  • СИМПЛЕКТИЧЕСКАЯ ГРУППА — (от лат. simplex простой) группа линейныхпреобразований конечномерного векторного пространства (вещественногоили комплексного), сохраняющих кососкалярное п р о и з в е д е н и е, т …   Физическая энциклопедия

  • Симплектическая группа — В математике термин симплектическая группа может отноститься к двум различным, но тесно связанным типам групп, обозначаемых Sp(2n, F) и Sp(n). Последние иногда называют компактными симплектическими группами в отличие от первых. Используются и… …   Википедия

  • симплектическая группа — simplektinė grupė statusas T sritis fizika atitikmenys: angl. symplectic group vok. symplektische Gruppe, f rus. симплектическая группа, f pranc. groupe sympléctique, m …   Fizikos terminų žodynas

  • СИМПЛЕКТИЧЕСКАЯ СТРУКТУРА — замкнутая невырожденная дифференциальнаяформа степени 2. Многообразие, снабжённое С. с., наз. симплектическиммногообразием. В каждом касательном пространстве С. с. задаёт кососкалярноепроизведение (см. в ст. Симплектическая группа). Кососкалярное …   Физическая энциклопедия

  • Симплектическая геометрия — область дифференциальной геометрии и дифференциальной топологии, изучающая симплектические многообразия: гладкие многообразия с выбранной замкнутой невырожденной 2 формой. Исходно симплектическая геометрия возникла из гамильтонова формализма в… …   Википедия

  • СИМПЛЕКТИЧЕСКАЯ СВЯЗНОСТЬ — аффинная связность на гладком многообразии Мразмерности 2n, обладающая ковариантно постоянной относительно нее невырожденной 2 формой Ф. Если аффинная связность на Мзадана с помощью локальных форм связности и то условие ковариантного постоянства… …   Математическая энциклопедия

  • СИМПЛЕКТИЧЕСКАЯ СТРУКТУРА — инфинитезимальная структура1 го порядка на четномерном гладком ориентируемом многообразии М 2n, к рая определяется заданием на М 2п невырожденной 2 формы Ф. В каждом касательном пространстве Т х( М 2n). возникает структура симплектич.… …   Математическая энциклопедия

  • ЛИ ГРУППА — группа G, обладающая такой структурой аналитического многообразия, что отображение прямого произведения в Gана литично. Другими словами, Ли г. это множество, наделенное согласованными структурами группы и аналитич. многообразия. Ли г. наз.… …   Математическая энциклопедия

  • ЛИНЕЙНАЯ КЛАССИЧЕСКАЯ ГРУППА — группа невырожденных линейных преобразований конечномерного векторного пространства Енад телом К, являющаяся классической группой (см. также Линейная группа). Важнейшими типами Л. к. г. являются следующие: полная линейная группа GLn(K),… …   Математическая энциклопедия

  • УНИТАРНАЯ ГРУППА — относительно формы f группа Un( К, f) всех линейных преобразований n мерного правого линейного пространства Vнад телом К, сохраняющих фиксированную невырожденную полуторалинейную (относительно инволюции J тела К)форму f на V, т. е. таких что У. г …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.