КЭЛИ ПРЕОБРАЗОВАНИЕ

КЭЛИ ПРЕОБРАЗОВАНИЕ

линейного (диссипативного) оператора Ас областью определения DomA, плотной в гильбертовом пространстве Н,- оператор определенный на подпространстве Матричный вариант такого преобразования рассматривал А. Кэли (A. Cay-ley). К. п. устанавливает соответствие между свойствами операторов А, чей спектр "близок" к действительной прямой, и операторов с околоунитарным спектром (близким к окружности Так, имеют место утверждения: 1) если А- линейный диссипатиеный оператор, то С A- сжатие (т. е. и 2) если Т- сжатие, и плотно в Н, то Т=С A при нек-ром линейном диссипативном операторе А:именно . 3) симметричность Аравносильна изометричности (унитарности) С A; 4) в частности ограниченность Аэквивалентна тому, что 51 если - идеал операторов в Н, то из следует если же А, В - ограниченные операторы, то верно и обратное: из следует К. п. устанавливает соответствие и между нек-рыми другими характеристиками операторов Аи С А. классификациями частей спектра, кратностями спектров, структурами инвариантных подпространств, функциональными исчислениями, спектральными разложениями и т. д. Так, если А - самосопряженный оператор с разложением единицы то при - разложение единицы для С А и

Лит.:[1] А х и е з е р Н. И., Г л а з м а н И. М., Теория линейных операторов в гильбертовом пространстве, 2 изд М. 1966; [2]Секефальви-Надь Б., Ф о я ш Ч., Гармонический анализ операторов в гильбертовом пространстве пер. с англ., М., 1970. Н. <К. Никольский.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "КЭЛИ ПРЕОБРАЗОВАНИЕ" в других словарях:

  • Преобразование Кэли — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Содержание 1 Определение 2 Алгебраические свойства …   Википедия

  • Преобразование Мёбиуса — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Не следует путать с обращением Мёбиуса. Преобразование Мёбиуса  дробно линейная функция одного комплексного переменного, тождественно не равная константе …   Википедия

  • Преобразование Мебиуса — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Содержание 1 Определение 2 Алгебраические свойства …   Википедия

  • Дробно-линейное преобразование — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Содержание 1 Определение 2 Алгебраические свойства …   Википедия

  • КОН-ФОССЕНА ПРЕОБРАЗОВАНИЕ — соответствие между парой изометричных поверхностей F1 и F2 и бесконечно малым изгибанием Zтак наз. срединной поверхности F ср.: если х 1 и х 2 радиус вектора поверхностен F1 и F2, то радиус вектор x ср поверхности F ср. равен а поле скоростей z… …   Математическая энциклопедия

  • ГИЛЬБЕРТОВО ПРОСТРАНСТВО С ИНДЕФИНИТНОЙ МЕТРИКОЙ — гильбертово пространство Е над полем комплексных чисел, снабженное непрерывной билинейной (точнее полуторалинейной) формой G, к рая, вообще говоря, не является положительно определенной. Форму Gчасто наз. G метрикой. Наиболее важным частным… …   Математическая энциклопедия

  • МАТРИЦА — прямоугольная таблица состоящая из тстрок и n столбцов, элементы к рой принадлежат нек рому множеству К. Таблица (1) наз. также матрицей над К, или мат рицей размера над K. Пусть совокупность всех матриц над К. Если т=п, то (1) наз. квадратной… …   Математическая энциклопедия

  • ИНВАРИАНТОВ ТЕОРИЯ — в классическом определении алгебраическая теория (иногда называемая также алгебраической И. т.), изучающая алгебраич. выражения (многочлены, рациональные функции или их совокупности), изменяющиеся определенным образом при невырожденных линейных… …   Математическая энциклопедия

  • Теория групп — Группа (математика) Теория групп Осно …   Википедия

  • ГЕОМЕТРИИ ОБЗОР — Геометрия раздел математики, тесно связанный с понятием пространства; в зависимости от форм описания этого понятия возникают различные виды геометрии. Предполагается, что читатель, приступая к чтению этой статьи, обладает некоторыми… …   Энциклопедия Кольера


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»