ЗАВИСЯЩИЙ ОТ ПАРАМЕТРОВ ИНТЕГРАЛ


ЗАВИСЯЩИЙ ОТ ПАРАМЕТРОВ ИНТЕГРАЛ

- интеграл вида

в к-ром точка х=(x1, х 2, ..., х п )пробегает пространство Rn (в случае, если эта точка пробегает только нек-рую область Dв пространстве Rn, то функцию f(x, у )можно считать равной нулю при а точка у=(y1, у 2, ..., у т), образующая совокупность параметров у 1, у 2, ..., у т, изменяется в пределах нек-рой области Gпространства Rm.

Основные вопросы теории таких интегралов - это выяснение условий непрерывности и дифференцируемости функции J(y)по параметрам у 1, у 2, ..., у m.Менее стеснительные условия непрерывности и дифференцируемости J(у)получают при понимании интеграла в смысле Лебега. Справедливы следующие утверждения.

1) Если функция f(x, у )для почти всех непрерывна по ув области и если существует интегрируемая в Rn функция g(x)такая, что для каждого и для почти всех справедливо неравенство то интеграл J(y)является непрерывной функцией ув области G.

2) Если функция f(x, t), определенная при для почти всех и каждого имеет производную к-рая для почти каждого является непрерывной функцией tна интервале (а, 6), и если существует интегрируемая в Rn функция g(x)такая, что для каждого и для почти всех справедливо неравенство то из существования при нек-ром интеграла

следует дифференцйруемость по tна интервале ( а, b )функции

и возможность вычисления производной J'(t)дифференцированием под знаком интеграла:

Из 1)- 2) получают ряд более простых утверждений о непрерывности и дифференцируемости интегралов по параметрам, относящихся к трактовке интеграла в смысле Римана и более частным случаям (см. [2] - [4]).

Несобственные интегралы, зависящие от параметров. Для простейшего несобственного интеграла 1-го рода

вводят понятие равномерной сходимости по параметру tна нек-ром сегменте Этот интеграл наз. равномерно сходящимся по tна сегменте [ с, d], если для любого e>0 найдется A(e)>0 такое, что

для всех

Справедливы следующие утверждения:

а)Если функция f(x, t )непрерывна в полуполосе и интеграл (*) сходится равномерно по tна сегменте [ с, d], то функция J(t)непрерывна на сегменте

б) Если f(x, tпроизводная непрерывны в полуполосе интеграл (1) сходится для нек-рого а интеграл

сходится равномерно относительно t на сегменте [ с, d], то функция J(t)дифференцируема на сегменте [ с, d]и ее производная может быть найдена по формуле

Аналогичные утверждения справедливы и для несобственного интеграла 2-го рода.

Лит.:[1] Владимиров В. С, Уравнения математической физики, 2 изд., М., 1971; [2] Ильин В. А., Позняк Э. Г., Основы математического анализа, ч. 2, М., 1973; [3] Кудрявцев Л. Д., Математический анализ, т. 2, М., 1970; [4] Никольский С. М., Курс математического анализа, т. 2, М., 1973; [5] Тихонов А. Н., Самарский А. А., Уравнения математической физики, 4 изд., М., 1972.

В. А. Ильин.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ЗАВИСЯЩИЙ ОТ ПАРАМЕТРОВ ИНТЕГРАЛ" в других словарях:

  • Зависящий от параметра интеграл — Интеграл, зависящий от параметра  математическое выражение, содержащее определённый интеграл и зависящее от одной или нескольких переменных («параметров»). Содержание 1 Зависящий от параметра собственный интеграл …   Википедия

  • Интеграл — Определённый интеграл как площадь фигуры У этого термина существуют и другие значения, см. Интеграл (значения). Интеграл функции  …   Википедия

  • Формулировка квантовой теории через интегралы по траекториям — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. ВНИМАНИЕ. Стат …   Википедия

  • Формулировка через интегралы по траекториям — ВНИМАНИЕ. Статья не полностью отражает современное состояние вопроса, содержит существенные пробелы и неточности. //7 янв 2010 Квантовая механика Принцип неопределённости Гейзенберга …   Википедия

  • Гамильтонов принцип — или начало Гамильтона, в механике и математической физике служит для получения дифференциальных уравнений движения. Этот принцип распространяется на всякие материальные системы, каким бы силам они ни были подвержены; сначала мы выскажем его в том …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • ТУРБУЛЕНТНОСТЬ ПЛАЗМЫ — явление, родственное обычной турбулентности, но осложнённое специфич. хар ром кулоновского вз ствия ч ц плазмы (эл нов и ионов). Поскольку для плазмы характерно большое разнообразие разл. типов движений и колебаний, в ней могут возникать и даже… …   Физическая энциклопедия

  • КВАНТОВАЯ ТЕОРИЯ ПОЛЯ. — КВАНТОВАЯ ТЕОРИЯ ПОЛЯ. Содержание:1. Квантовые поля ................. 3002. Свободные поля и корпускулярно волновой дуализм .................... 3013. Взаимодействие полей .........3024. Теория возмущений ............... 3035. Расходимости и… …   Физическая энциклопедия

  • ЗАПАЗДЫВАЮЩИХ ПОТЕНЦИАЛОВ МЕТОД — принцип Дюамеля, метод отыскания решения однородной задачи Коши для неоднородного линейного дифференциального уравнения или системы с частными производными по известному решению однородного уравнения или системы. Пусть дано уравнение где L… …   Математическая энциклопедия

  • ГОСТ 16465-70: Сигналы радиотехнические измерительные. Термины и определения — Терминология ГОСТ 16465 70: Сигналы радиотехнические измерительные. Термины и определения оригинал документа: 40. Абсолютное отклонение сигналов Максимальное значение разности мгновенных значений сигналов, взятых в один и тот же момент времени на …   Словарь-справочник терминов нормативно-технической документации

  • Ортогональные многочлены — Пафнутий Львович Чебышёв В математике последовательностью ортогональных многочленов называют бесконечную последовательность действительных многочленов …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.