Гамильтонов принцип

Гамильтонов принцип
или начало Гамильтона, в механике и математической физике служит для получения дифференциальных уравнений движения. Этот принцип распространяется на всякие материальные системы, каким бы силам они ни были подвержены; сначала мы выскажем его в том виде, какой он принимает, если силы имеют потенциал, зависящий или не зависящий от времени явным образом.
Пусть q1, q2, q3 ... независимые координаты, или координатные параметры, определяющие положение материальной системы; положим, k есть число этих параметров. Пусть U есть потенциал сил, действующих на систему; U есть функция от q1, q2, q3 ... и может быть еще и функцией от t. Пусть Т означает живую силу материальной системы; это есть функция от t, q1, q2, q3 ... и от производных
dq1/dt, dq2/dt, dq3/dt,...
относительно этих производных Т есть функция второй степени.
Если бы вопрос о движении системы при действии данных сил был решен, то координаты q выражались бы функциями времени t и 2k произвольных постоянных С1, С2, С3,... ; пусть эти функции будут: f1, f2, f3,...
Составим сумму T + U, которую обозначим через L. Согласно вышесказанному, это есть функция от t, координат q и их производных q'; но если мы подставим вместо q1, q2, q3... соответствующие им функции f1, f2, f3,..., а вместо производных q'1, q'2,... производные по t от соответствующих функций f, то L обратится в функцию от t и от 2k произвольных постоянных С.
Предположив, что L выражена таким образом, возьмем интеграл от Ldt между произвольными пределами: нижним t1 и верхним t2; полученный интеграл, который обозначим через S:
будет функцией от t2, t1 и величины С.
Предположим, что положения материальной системы в моменты t1 и t2 вполне обозначены, так что координаты q имеют определенные значения для момента t1 и другие определенные значения для момента t2, тогда по этим 2k данным найдется по меньшей мере одна совокупность значений 2k величин С1, С2, С3,... ; обозначим найденные величины малыми с1, с2, с3,....
Под влиянием данных сил материальная система перейдет из данного первого положения в положение второе по таким путям, на которых вышесказанные величины С будут сохранять постоянные значения с1, с2, с3 ...; эти пути или этот путь системы условимся называть прямым путем.
Однако есть возможность перевести ту же материальную систему из первого положения во второе в течение времени (t2-t1) по другому, окольному, пути; для этого надо присоединить к данным силам еще новые силы или же сообщить ей во время движения ряд толчков. Так как добавочные силы или толчки могут быть бесконечно разнообразны, то и окольные пути будут столь же разнообразны. На каждом из окольных путей C будут уже не постоянны, но будут изменяемы с течением движения в зависимости от вида окольного пути; но только они должны будут иметь значения с1, с2, с3,.... в конечных положениях системы — первом и втором.
Предположим, что будем рассматривать окольные пути бесконечно мало отличающиеся от прямого; тогда значения С на этих путях будут отличаться от постоянных с1, с2, с3,.... на ничтожно малые величины δС1, δС2, δС3, которые мы назовем вариациями этих постоянных. Вариации δС1, δС2, δС3,... суть функции от t произвольного вида, обращающиеся в нуль при t1 и t2 и имеющие ничтожно малые величины при промежуточных значениях t.
Если постоянные С получают вариации на окольных путях, то и величина S варьируется. Принцип Гамильтона состоит в том, что вариация первого порядка интеграла S равна нулю для всяких окольных путей, бесконечно мало отличающихся от прямого.
Равенство δS=0 может быть представлено следующим образом:
причем вариации от Т и U можно представить в виде сумм:
δT = Σ(dT/dq')δq' + Σ(dT/dq)δq
δU = Σ(dU/dq)δq.
Поступив с равенством (II) так, как объяснено в статье "Вариационное исчисление" (см.), получим из равенства (II), выражающего принцип Гамильтона, Лагранжевы дифференциальные уравнения движения рассматриваемой материальной системы, т. е. уравнения:
d/dt[dL/dq1'] = dL/dq1
d/dt[dL/dq2'] = dL/dq2 и проч.
Подробнее о начале Гамильтона см. С. G. J. Jacobi, "Vorlesungen über Dynamik" (1866), или в полном издании сочинений Якоби, Supplementband.
Равенство δS = 0 выражает, что интеграл S есть minimum, maximum или minimax; для суждения о том, который из этих случаев имеет место, надо составить и определить знак вариации второго порядка от S.
Принцип Гамильтона имеет место и тогда, когда силы не имеют потенциала; он тогда выражается так:
где Q есть составляющая сил по координатному параметру q. О применении этого принципа к составлению дифференциальных уравнений гидродинамики и теории упругости см. Kirchhoff, "Vorlesungen über mathematische Physik", "Mechanik" (1874); "Mathematical papers of the late George Green" (1871).
Д. Б.

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон. 1890—1907.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Гамильтонов принцип" в других словарях:

  • Остроградский, Михаил Васильевич — профессор математики, ординарный академик Императорской Академии Наук. М. В. Остроградский родился 12 сентября 1801 года в принадлежавшей его отцу деревне Пашенной, Кобелякского уезда, Полтавской губернии, где и провел свои детские годы.… …   Большая биографическая энциклопедия

  • Гамильтон Вильям Роуэн — (William Rowan Hamilton, 1806 1865) один из гениальнйших математиков настоящего столетия, родился в Дублине. Уже в детстве он проявил необыкновенные дарования. Семи лет он знал еврейский язык; двенадцати он под руководством своего дяди, хорошего… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Остроградский — (Михаил Васильевич) известный русский геометр, ординарный академик; сын помещика Полтавской губернии, родился в 1801 году. Получая первоначальное образование в пансионе при полтавской гимназии, был на 10 м году записан на службу в канцелярию… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Преобразование координат — заключается в том, чтобы формулы, заключающие координаты какой либо системы, преобразовать таким образом, чтобы в них вошли координаты другой системы. Понятие о различных системах координат дано в статье Координаты (см.). Чаще всего приходится… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Совокупные дифференциальные уравнения — (Equations differentielles simultanées). В статье Дифференциальные уравнения (см.) было сказано, что дифференциальные уравнения дают зависимость между независимыми переменными, их функциями и производными этих функций по независимым переменным.… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • ВАРИАЦИОННЫЕ ПРИНЦИПЫ КЛАССИЧЕСКОЙ МЕХАНИКИ — основные, исходные положения аналитич. механики, математически выраженные в форме вариационных соотношений, из к рых как логпч. следствия вытекают дифференциальные уравнения движения, а также все положения и законы механики. В В. п. к. м.… …   Математическая энциклопедия

  • Максвелл, Джеймс Клерк — В Википедии есть статьи о других людях с такой фамилией, см. Максвелл. Джеймс Клерк Максвелл James Clerk Maxwell …   Википедия

  • Классическая механика —     Классическая механика …   Википедия

  • ЭЛЕКТРОДИНАМИКА — классическая, теория (неквантовая) поведения электромагнитного поля, осуществляющего взаимодействие между электрич. зарядами (электромагнитное взаимодействие). Законы классич. макроскопич. Э. сформулированы в Максвелла уравнениях, к рые позволяют …   Физическая энциклопедия

  • МНОГООБРАЗИЕ — множество, точки к рого задаются набором чисел (координат), причём при переходе от точки к точке координаты меняются непрерывно. Локально, т. е. в нек рой окрестности каждой точки, M. устроено так же, как евклидово пространство . (элементы к рого …   Физическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»