Волновое уравнение

Волновое уравнение
        дифференциальное уравнение с частными производными, описывающее процесс распространения возмущений в некоторой среде. В случае малых возмущений и однородной изотропной среды В. у. имеет вид:
        
        где х, у, z — пространственные переменные, t время, u = u (х, у, z) — искомая функция, характеризующая возмущение в точке (х, у, z) в момент t, а — скорость распространения возмущения. В. у. является одним из основных уравнений математической физики и широко используется в приложениях. Если u зависит только от двух (одной) пространственных переменных, то В. у. упрощается и называется двумерным (одномерным). В. у. допускает решение в виде «расходящейся сферической волны»:
         u = f (t - r/a)/r,
        где f — произвольная функция, a
         Особый интерес представляет так называемое элементарное решение (элементарная волна):
         Особый интерес представляет так называемое элементарное решение (элементарная волна):
         u = δ (t - r/a)/r
        (где δ — Дельта-функция), дающее процесс распространения возмущения, произведённого мгновенным точечным источником (действовавшим в начале координат при t = 0). Образно говоря, элементарная волна представляет собой «бесконечный всплеск» на окружности r = at, удаляющийся от начала координат со скоростью а с постепенным уменьшением интенсивности. При помощи наложения элементарных волн можно описать процесс распространения произвольного возмущения.
         Малые колебания струны описываются одномерным В. у.:
        
        Ж. Д'Аламбер предложил (1747) метод решения этого В. у. в виде наложения прямой и обратной волн: u = f (x - at) + g (x + at), а Л. Эйлер (1748) установил, что функции f и g определяются заданием так называемых начальных условий (См. Начальное условие).
         Лит.: Тихонов А. Н. и Самарский А. А., Уравнения математической физики, 3 изд., М., 1966.
         П. И. Лизоркин.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Волновое уравнение" в других словарях:

  • Волновое уравнение — в математике  линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно… …   Википедия

  • ВОЛНОВОЕ УРАВНЕНИЕ — в механике, линейное однородное дифф. ур ние в частных производных, описывающее распространение волн в среде; имеет вид: где t время, х, у, z пространственные декартовы координаты, W= W(х, у, z, t) ф ция, характеризующая возмущение среды в точке… …   Физическая энциклопедия

  • ВОЛНОВОЕ УРАВНЕНИЕ — дифференциальное уравнение с частными производными 2 го порядка, описывающее процесс распространения возмущений в некоторой среде. Напр., малые колебания натянутой струны описываются волновым уравнением где u(х,t) искомая функция отклонение… …   Большой Энциклопедический словарь

  • Волновое уравнение — линейное в частных производных второго порядка уравнение с постоянными коэффициентами, описывающее распространение в среде возмущений с постоянной скоростью. При выводе В. у. из уравнений газовой динамики пренебрегают вязкостью и объёмными силами …   Энциклопедия техники

  • волновое уравнение — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN wave equation …   Справочник технического переводчика

  • волновое уравнение — дифференциальное уравнение с частными производными 2 го порядка, описывающее процесс распространения возмущений в некоторой среде. Например, малые колебания натянутой струны описываются волновым уравнением ,где u (х, t)  искомая функция … …   Энциклопедический словарь

  • волновое уравнение — banginė lygtis statusas T sritis fizika atitikmenys: angl. wave equation vok. Wellengleichung, f rus. волновое уравнение, n pranc. équation de l’onde, f; équation d’onde, f …   Fizikos terminų žodynas

  • ВОЛНОВОЕ УРАВНЕНИЕ — уравнение с частными производными вида описывающее различные колебательные процессы и процессы распространения волн. Для В. у., являющегося уравнением гиперболич. типа, обычно ставятся две задачи: Коши задача и смешанная задача. Классич. решением …   Математическая энциклопедия

  • волновое уравнение — волновое уравнение — линейное в частных производных второго порядка уравнение с постоянными коэффициентами, описывающее распространение в среде возмущений с постоянной скоростью. При выводе В. у. из уравнений газовой динамики пренебрегают… …   Энциклопедия «Авиация»

  • волновое уравнение — волновое уравнение — линейное в частных производных второго порядка уравнение с постоянными коэффициентами, описывающее распространение в среде возмущений с постоянной скоростью. При выводе В. у. из уравнений газовой динамики пренебрегают… …   Энциклопедия «Авиация»


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»