Нормальная форма матриц

Нормальная форма матриц
(жорда́нова)
        С каждой квадратной матрицей (См. Матрица) А. В этом классе всегда существует матрица, имеющая специальную нормальную (или каноническую) жорданову форму [термин «Н. (ж.) ф. м.» связан с именем К. Жордана]. На схеме показана жорданова форма некоторой матрицы 8-го порядка:
        (1)
         (1)
         Вдоль главной диагонали расположены специальные квадратные клетки (на схеме они обведены пунктиром). Все элементы матрицы, расположенные вне этих клеток, равны нулю. В каждой диагональной клетке вдоль главной диагонали повторяется одно и то же (комплексное) число (в первой клетке λ1, во второй λ2 и т.д.); параллельный ряд над главной диагональю состоит из единиц. Все же остальные элементы в диагональных клетках равны нулю. На приведённой схеме имеются три диагональные клетки, из которых первая имеет порядок 4, вторая и третья — порядок 2. В общем же случае число клеток и порядки их могут быть любыми. Среди чисел λ1, λ2,... возможны и равные. Исходная матрица А в указанном примере имеет следующие Элементарные делители: (λ — λ1)4, (λ — λ2)2, (λ — λ3)2. По элементарным делителям матрицы однозначно определяется её жорданова форма.
         Если матрица А имеет жорданову форму I, то существует неособенная матрица Т такая, что А = TIT-1. Замену матрицы А подобной ей матрицей I называют приведением матрицы А к нормальной жордановой форме.
         Представление о применениях жордановой формы матрицы можно получить на примере системы линейных дифференциальных уравнений с постоянными коэффициентами:
        
        ……………………………………….
        ……………………………………….
        в матричной записи:
         в матричной записи:
        
        Введём новые неизвестные функции y1, у2,... yn при помощи неособенной матрицы tik - числа (i, k = 1, 2, …, n)]:
        ,
        ,
        ,
        ,
        …………………………………….
        ;
        ;
         в матричной записи:
         х = Ту.
         Подставляя это выражение для x в (2), получим:
        
         где матрица I связана с матрицей А равенством:
         А=TIT-1.
         Обычно матрицу Т подбирают так, чтобы матрица А имела жорданову форму. В этом случае система уравнений (3) значительно проще системы (2). Так, например, при n = 8, если матрица
        
        ,
        
        ,
        
        ,
        
        ,
        Интегрирование такой системы сводится к многократному интегрированию одного дифференциального уравнения.
         Лит. см. при ст. Матрица.
        Жорданова форма некоторой матрицы 8-го порядка (1).
        Жорданова форма некоторой матрицы 8-го порядка (1).

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "Нормальная форма матриц" в других словарях:

  • Нормальная (жорданова) форма матриц — Нормальная (жорданова) форма матриц. С каждой квадратной матрицей связан целый класс матриц, подобных матрице А. В этом классе всегда существует матрица, имеющая специальную нормальную (или каноническую) жорданову форму [термин «Н. (ж.) ф. м.»… …   Большая советская энциклопедия

  • НОРМАЛЬНАЯ ФОРМА — 1) Н. ф. матрицы A матрица Nзаранее определенного специального вида, получаемая из Ас помощью преобразований определенного типа. В зависимости от рассматриваемого типа преобразований, от области K, к к рой принадлежат коэффициенты А , от вида Аи …   Математическая энциклопедия

  • Фробениусова нормальная форма — Эта статья должна быть полностью переписана. На странице обсуждения могут быть пояснения …   Википедия

  • Перемножение матриц — Матрица  математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… …   Википедия

  • Произведение матриц — Матрица  математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… …   Википедия

  • Разница матриц — Матрица  математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… …   Википедия

  • Матрица — I Матрица (нем. Matrize, от латинского matrix матка, источник, начало)         в полиграфии,          1) сменный элемент литейной формы с углублённым (иногда фотографическим) изображением буквы или знака, используемый при отливке типографских… …   Большая советская энциклопедия

  • Спектральный анализ — I Спектральный анализ         физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров. Физическая основа С. а. Спектроскопия атомов и молекул, его… …   Большая советская энциклопедия

  • Линейные дифференциальные уравнения —         дифференциальные уравнения вида          y(n) + p1(x) у(n 1) + ... + pn(x)y = f(x), (1)          где у = y(x) искомая функция, y(n), у(n 1),..., y её производные, a p1(x), p2(x),..., pn(x) (коэффициенты) и f(x) (свободный член) заданные… …   Большая советская энциклопедия

  • Подобные матрицы —         квадратные матрицы (См. Матрица) А и В порядка n, связанные соотношением В = Р 1АР, где Р какая либо неособенная (т. е. имеющая обратную) матрица того же порядка. При задании матрицей линейного преобразования (См. Линейное преобразование) …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»