Биномиальные коэффициенты

Биномиальные коэффициенты
так называются количества: l, n/1, n(n —1)/(1.2), n(n — 1)(n — 2)/(1.2.3)..., n(n — 1)(n — 2)...(n — m + 1)/(1.2.3...m), составляющие коэффициенты последовательных членов бинома Ньютона (см. Бином). Их обозначают в настоящее время часто знаком . Общий вид Б. коэффициента может быть написан кратко следующим образом:
где n! = 1.2.3…n и т. п. Б. коэффициенты обладают многими интересными свойствами, которые легко получаются как частные случаи свойств членов самого бинома Ньютона. Вот некоторые из этих свойств: ряд Б. коэффициентов имеет один максимум, для n больше 1, или один минимум, для n меньше 1. Сумма всех Б. коэффициентов равна 2n. С увеличением и до бесконечности ряд Б. коэффициентов стремится совпасть с рядом значений функции еx². Если n есть число простое, то всякий Б. коэффициент делится на n и др.

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон. 1890—1907.

Игры ⚽ Поможем сделать НИР

Смотреть что такое "Биномиальные коэффициенты" в других словарях:

  • Биномиальные коэффициенты — коэффициенты в разложении (1 + x)n по степеням x (т. н. бином Ньютона): Иначе говоря, (1 + x)n является производящей функцией для биномиальных коэффициентов. Значение биномиального коэффициента определено для всех целых чисел n и k. Явные формулы …   Википедия

  • Биномиальные коэффициенты —         коэффициенты в формуле разложения Ньютона бинома …   Большая советская энциклопедия

  • БИНОМИАЛЬНЫЕ КОЭФФИЦИЕНТЫ — коэффициенты при степенях z в разложений Ньютона бинома . Б. к. обозначается или и равен Обозначение восходит к Л. Эйлеру (L. Euler); второе обозначение появилось в 19 в. и связано, по видимому, с интерпретацией Б. к. как числа различимых… …   Математическая энциклопедия

  • Паскаля треугольник — Биномиальные коэффициенты коэффициенты в разложении (1 + x)n по степеням x (т. н. бином Ньютона): Иначе говоря, (1 + x)n является производящей функцией для биномиальных коэффициентов. Значение биномиального коэффициента определено для всех целых… …   Википедия

  • Биномиальный коэффициент — В математике биномиальные коэффициенты  это коэффициенты в разложении бинома Ньютона по степеням x. Коэффициент при обозначается или и читается «биномиальный коэффициент из n по k» (или «це из n по k»): В …   Википедия

  • Ньютона бином —         название формулы, выражающей любую целую положительную степень суммы двух слагаемых (бинома, двучлена) через степени этих слагаемых, а именно:                  (1)          (1) где n целое положительное число, а и b какие угодно числа.… …   Большая советская энциклопедия

  • Бином Ньютона — Бином Ньютона  формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид , где   биномиальные коэффициенты,   неотрицательное целое число. В таком виде эта формула была известна… …   Википедия

  • биномиальное распределение — (распределение Бернулли), распределение вероятностей числа появлений некоторого события при повторных независимых испытаниях, если вероятность появления этого события в каждом испытании равна р (0≤р≤1). Именно, число μ появлений этого события… …   Энциклопедический словарь

  • Последовательность Падована — Последовательность Падована  это целочисленная последовательность P(n) с начальными значениями и линейным рекуррентным соотношением Первые значения P(n) таковы 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265 …   Википедия

  • Бином ньютона — Бином Ньютона  это формула , где   биномиальные коэффициенты, n  неотрицательное целое число. Содержание 1 Доказательство …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»