Уравнение синус-Гордона

Уравнение синус-Гордона

Уравнение синус-Гордона — это нелинейное гиперболическое уравнение в частных производных в 1 + 1 измерениях, включающее в себя оператор Даламбера и синус неизвестной функции. Изначально оно было рассмотрено в XIX веке в связи с изучением поверхностей постоянной отрицательной кривизны. Это уравнение привлекло много внимания в 1970-х из-за наличия у него солитонных решений.

Содержание

Происхождение уравнения и его названия

Существует две эквивалентные формы уравнения синус-Гордона. В (вещественных) координатах пространство-время, обозначенных (xt), уравнение имеет вид:

\, \varphi_{tt}- \varphi_{xx} + \sin\varphi = 0.

При переходе к координатам светового конуса (uv), близким к асимптотическим координатам, где

 u=\frac{x+t}2, \quad v=\frac{x-t}2,

уравнение принимает вид:

\varphi_{uv} = \sin\varphi.\,

Это исходная форма уравнения синус-Гордона, в которой оно было рассмотрено в XIX веке в связи с изучением поверхностей постоянной гауссовой кривизны K = −1, также называемых псевдосферами. Выберем систему координат, в которой координатная сетка u = constant, v = constant задаётся асимптотическими линиями, параметризованными длиной дуги. Первая квадратичная форма данной поверхности в таких координатах примет специальный вид:

 ds^2 = du^2 + 2\cos\varphi \,du\, dv + dv^2,\,

где φ — угол между асимптотическими линиями, и для второй квадратичной формы, L = N = 0. Тогда уравнение Петерсона ― Кодацци, отражающее условие совместимости между первой и второй квадратичными формами, приводит к уравнению синус-Гордона. Изучение этого уравнения и соответствующих преобразований псевдосфер в XIX веке Бьянки и Бэклундом привели к открытию преобразований Бэклунда. Название «уравнение синус-Гордона» каламбур на тему хорошо известного в физике уравнения Клейна-Гордона:

 \varphi_{tt}- \varphi_{xx} + \varphi\ = 0.\,

Уравнение синус-Гордона является уравнением Эйлера-Лагранжа для лагранжиана

\mathcal{L}_\text{sine–Gordon}(\varphi) := \frac{1}{2}(\varphi_t^2 - \varphi_x^2) -1 + \cos\varphi.

Используя разложение в ряд Тейлора косинуса

\cos(\varphi) = \sum_{n=0}^\infty \frac{(-\varphi ^2)^n}{(2n)!}

в данном лагранжиане, он может быть записан как лагранжиан Клейна-Гордона плюс члены более высокого порядка


\begin{align}
\mathcal{L}_\text{sine–Gordon}(\varphi) & = \frac{1}{2}(\varphi_t^2 - \varphi_x^2) - \frac{\varphi^2}{2} + \sum_{n=2}^\infty \frac{(-\varphi^2)^n}{(2n)!} \\
& = 2\mathcal{L}_\text{Klein–Gordon}(\varphi) + \sum_{n=2}^\infty \frac{(-\varphi^2)^n}{(2n)!}.
\end{align}

Солитонные решения

Интересное свойство уравнения синус-Гордона — существование солитонных и многосолитонных решений.

Односолитонное решение

Уравнение синус-Гордона имеет следующие односолитонные решения:

\varphi_\text{soliton}(x, t) := 4 \arctan e^{m \gamma (x - v t) + \delta}\,

где

\gamma^2 = \frac{1}{1 - v^2}.

односолитонное решение, для которого мы выбрали положительный корень для \gamma, называется кинк и представляет виток по переменной \varphi , который переводит одно решение \varphi=0 в смежное \varphi=2\pi. Состояния \varphi=0(\textrm{mod}2\pi) известны как вакуумные, так как они постоянные решения нулевой энергии. Односолитонное решение, в котором мы взяли отрицательный корень для \gamma, называется антикинк. Форма односолитонных решений может быть получена посредством применения преобразования Бэклунда к тривиальному (постоянному вакуумному) решению и интегрированию получившихся дифференциальных уравнений первого порядка:

{\varphi^\prime}_u = \varphi_u + 2\beta\sin\left(\frac{\varphi^\prime + \varphi}{2}\right),
{\varphi^\prime}_v = -\varphi_v + \frac{2}{\beta} \sin\left(\frac{\varphi^\prime - \varphi}{2}\right)\text{ with }\varphi = \varphi_0 = 0

Оодносолитонные решения могут быть визуализированы посредством синус-гордоновской модели упругой ленты.[1] Примем виток упругой ленты по часовой стрелке (левовинтовой) за кинк с топологическим зарядом \vartheta_{\textrm{K}}=-1. Альтернативный виток против часовой стрелки (правовинтовой) с топологическим зарядом \vartheta_{\textrm{AK}}=+1 будет антикинком.

Двухсолитонные решения

Многосолитонные решения могут быть получены посредством непрерывного применения преобразования Бэклунда к односолитонному решению, как предписывается решёткой Бьянки, соответствующей результатам преобразования.[2] 2-солитонные решения уравнения синус-Гордона проявляют некоторые характерные свойства солитонов. Бегущие синус-гордоновские кинки и/или антикинки проходят сквозь друг друга как полностью проницаемые, и единственный наблюдаемый эффект — фазовый сдвиг. Так как сталкивающиеся солитоны сохраняют свою скорость и форму, такой вид взаимодействия называется упругим столкновением.

Другие интересные двухсолитонные решения возникают из возможности спаренного кинк-антикинкового поведения, известного как бризер. Известно три типа бризеров: стоячий бризер, бегущий высокоамплитудный бризер и бегущий малоамплитудный бризер.[3]

Трёхсолитонные решения

Трёхсолитонные столкновения между бегущим кинком и стоячим бризером или бегущим антикинком и стоячим бризером приводят к фазовому сдвигу стоячего бризера. В процессе столкновения между движущимся кинком и стоячим бризером сдвиг последнего \Delta_{\textrm{B}} даётся соотношением:

\Delta_B =\frac{2\textrm{arctanh}\sqrt{(1-\omega^{2})(1-v_\text{K}^2)}}{\sqrt{1-\omega^{2}}}

где v_\text{K} — скорость кинка, а \omega — частота бризера.[3] Если координата стоячего бризера до столкновения — x_{0}, то после столкновения она станет x_0 + \Delta_\text{B}.


Связанные уравнения

Уранение шинус-Гордона:

\varphi_{xx}- \varphi_{tt} = \sinh\varphi.\,

Это уравнения Эйлера — Лагранжа для лагранжиана

\mathcal{L}={1\over 2}(\varphi_t^2 - \varphi_x^2) - \cosh\varphi.\,

Другое тесно связанное с уравнением синус-Гордона — это эллиптическое уравнение синус-Гордона:

\varphi_{xx} + \varphi_{yy} = \sin\varphi,\,

где \varphi — функция переменных x и y. Это уже не солитонное уравнение, но оно имеет много похожих свойств, так как оно связано с уравнением синус-Гордона аналитическим продолжением (или поворотом Вика) y = it.

Эллиптическое уранение шинус-Гордона может быть определено аналогичным образом. Обобщение даётся теорией поля Тоды.

Квантовая версия

В квантовой теории поля модель синус-Гордона содержит параметр, который может быть отождествлён с постоянной Планка. Спектр частиц состоит из солитона, антисолитона и конечного (возможно, нулевого) числа бризеров. Число бризеров зависит от данного параметра. Множественные рождения частиц сокращаются на уравнениях движения. Квазиклассическое квантование модели синус-Гордона было осуществлено Людвигом Фаддеевым и Владимиром Корепиным, см. Physics Reports том 42(1), стр. 1-87, июнь 1978. Точная квантовая матрица рассеяния была открыта Александром Замолодчиковым. Данная модель s-дуальна модели Тирринга.

В конечном объёме и на луче

Также рассматривают модель синус-Гордона на круге, отрезке прямой или луче. Возможно подобрать граничные условия, которые сохраняют интегрируемость данной модели. На луче спектр частиц содержит пограничные состояния кроме солитонов и бризеров.

Суперсимметричная модель синуса-Гордона

Суперсимметричный аналог модели синус-Гордона также существует. С таким же успехом для него могут быть найдены сохраняющие интегрируемость граничные условия.

Примечания

  1. Dodd RK, Eilbeck JC, Gibbon JD, Morris HC. Solitons and Nonlinear Wave Equations. Academic Press, London, 1982.
  2. Rogers C, Schief WK. Bäcklund and Darboux Transformations'.' New York: Cambridge University Press, 2002.
  3. 1 2 Miroshnichenko A, Vasiliev A, Dmitriev S. Solitons and Soliton Collisions.

Ссылки

  • Polyanin AD, Zaitsev VF. Handbook of Nonlinear Partial Differential Equations. Chapman & Hall/CRC Press, Boca Raton, 2004.
  • Rajaraman R. Solitons and instantons. North-Holland Personal Library, 1989.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "Уравнение синус-Гордона" в других словарях:

  • Уравнение Клейна — Гордона — Уравнение Клейна  Гордона (Уравнение Клейна  Гордона  Фока): или, кратко, используя вдобавок естественные единицы (где ): где …   Википедия

  • СИНУС-ГОРДОНА УРАВНЕНИЕ — релятивистски инвариантное ур ние …   Физическая энциклопедия

  • СИНУС ГОРДОНА УРАВНЕНИЕ — Sinе Gоrdоn уравнение, релятивистски инвариантное уравнение, в пространственно временных переменных имеющее вид (A) Название предложено М. Крускалом по аналогии с линейным Клейна Гордона уравнением (где вместо sin истоит и). В характеристических… …   Математическая энциклопедия

  • Уравнение Клейна — Уравнение Клейна  Гордона (Уравнение Клейна  Гордона  Фока, уравнение Клейна Фока): или, кратко, используя вдобавок естественные единицы (где ): где   оператор Д’Аламбера. явля …   Википедия

  • НЕЛИНЕЙНОЕ УРАВНЕНИЕ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ — уравнение вида где есть мультииндекс с целыми неотрицательными где. Аналогично определяется Н. у …   Математическая энциклопедия

  • КЛЕЙНА - ГОРДОНА УРАВНЕНИЕ — (Клейна Гордона Фока уравнение) простейшее релятивистски инвариантное ур ние, описывающее свободное скалярное (или псевдоскалярное) поле физическое. Впервые получено в 1926 Э. Шрёдингеро …   Физическая энциклопедия

  • КОНСТРУКТИВНАЯ КВАНТОВАЯ ТЕОРИЯ ПОЛЯ — раздел математической физики, изучающий свойства моделей квантовой теории поля (к. т. п.). Одна из задач К. к. т. п. состоит в исследовании квантовых полей в реальном 4 мерном пространстве времени. Однако само существование этих полей остается… …   Математическая энциклопедия

  • Позняк, Эдуард Генрихович — Эдуард Генрихович Позняк Дата рождения: 1 мая 1923(1923 05 01) Место рождения …   Википедия

  • Топологическое квантовое число — В физике топологическое квантовое число (также называемое топологическим зарядом)  это любая величина в физической теории, которая принимает лишь дискретное множество значений, вследствие топологических соображений. Обычно топологические… …   Википедия

  • ТОПОЛОГИЧЕСКИЙ ЗАРЯД — формальная характерис тика динамич. системы в существенно нелинейных моделях (см. Нелинейная квантовая теория поля, Нелинейные системы), применяемых для описания протяжённых локализованных структур (частиц, монополей, вихрей, солитонов,… …   Физическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»