p-АДИЧЕСКОЕ ЧИСЛО это:

p-АДИЧЕСКОЕ ЧИСЛО

- элемент расширения поля рациональных чисел, получаемого на основе свойств делимости целых чисел на заданное простое число р.

Это расширение есть пополнение поля рациональных чисел относительно неархимедова нормирования (см. Абсолютное значение).

Целым р-адическим числом для произвольного простого рназ. последовательность вычетов удовлетворяющих условию


Сложение и умножение целых р-А. ч. определяется формулами


Каждое целое число тотождествляется с р-А. ч. х= (m, т, ...). Относительно сложения и умножения целые р-А. ч. образуют кольцо, к-рое содержит кольцо целых чисел. Кольцо целых р-А. ч. может быть также определено как проективный предел


колец вычетов по mod р n (относительно естественных проекций).

р-адическим числом, или рациональным р-адическим числом, наз. элемент поля отношений кольца целых р-А. ч. Это поле наз. полем р-адических чисел и содержит поле рациональных чисел в качестве подполя. Как кольцо, так и поле р-А. ч. наделяются естественной топологией. Эта топология может быть определена метрикой, связанной с р-адической нормой, т. е. с функцией от р-А. ч. х, определяемой следующим образом. Если то ходнозначно представимо в виде где а - обратимый элемент кольца целых р-А. ч. Тогда р-адическая норма равна Если x=0, то Определяя сначала только на рациональных числах, можно получить поле р-А. ч. как пополнение поля рациональных чисел.

Каждый элемент поля р-А. ч. может быть представлен в виде


где - целые, - нек-рое целое число, и ряд (*) сходится в метрике поля Qp. Числа с условием (т. е. с ) образуют кольцо Zp целых р-А. ч., являющееся пополнением кольца целых чисел поля Q. Числа с условием образуют мультипликативную группу и наз. р - адическими единицами. Совокупность чисел с условием является главным идеалом в Zp с образующим элементом р. Кольцо является полным кольцом дискретного нормирования. Поле локально компактно в топологии, индуцируемой метрикой Поэтому в нем существует инвариантная мера m, подчиняемая обычно условию Для различных рнормирования независимы, а поля неизоморфны. Многие факты и понятия классического анализа переносятся на случай р-адических полей.

р-А. ч. связаны с решением диофантовых уравнений по модулю возрастающей степени простого числа. Так, если - многочлен с целыми коэффициентами, то разрешимость при всех сравнения


эквивалентна разрешимости уравнения в целых р-А. ч. Необходимым условием разрешимости этого уравнения в целых или рациональных числах является его разрешимость в кольцах или, соответственно, полях р-А. ч. при всех р. Такой подход к решению

диофантовых уравнений и, в частности, выяснение вопроса о достаточности этих условий, наз. локальными условиями, составляет важную часть современной теории чисел (см. Диофантова геометрия). Упомянутое выше свойство разрешимости в одном частном случае может быть заменено более простым. Именно, если


имеет решение и это решение определяет неособую точку гиперповерхности где - многочлен взятый по то данное уравнение имеет решение в целых р-А. ч., сравнимое Это утверждение, известное под назв. Гензеля леммы, является частным случаем более общего факта, относящегося к теории схем.

Кольцо целых р-А. ч. может рассматриваться как часть более общей конструкции колец Витта W(A). Кольцо целых р-А. ч. получается в том случае, когда - конечное поле из рэлементов (см. Витта век-mop). Другим обобщением р-А. ч. являются -адические числа, возникающие при пополнении полей алгебраич. чисел относительно неархимедовых нормировании, связанных с простыми дивизорами.

р-А. ч. были введены К. Гензелем (см. [1]). Существующее для них канонич. представление является аналогом разложения аналитич. функций в степенной ряд. Это есть одно из проявлений аналогии между алгебраич. числами и алгебраич. функциями.

Лит.:[1] Неnsе1. К., "Jahresber. Dtsch. Math. Ver.", 1899, Bd 6, H. 1, S. 83-8; [2] Боревич 3. И., Шафаревич И. Р., Теория чисел, 2 изд., М., 1972; [3] Ленг С., Алгебраические числа, пер. с англ., М., 1966; [4] Вейль Г., Алгебраическая теория чисел, пер. с англ., М., 1947; [5] Нassе Н., Zahlentheorie, 2 Aufl., В., 1963; [6] Вейль А., Основы теории чисел, пер. с англ., М., 1972; [7] Бурбаки Н., Коммутативная алгебра, пер. с франц., М., 1971.

Л. Н. Паршин, В. Г. Спринджук.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "p-АДИЧЕСКОЕ ЧИСЛО" в других словарях:

  • P-адическое число — (произносится: пэ адическое)  элемент расширения поля рациональных чисел, являющегося пополнением поля рациональных чисел относительно p адической нормы, которая определяется на основе свойств делимости целых чисел на заданное простое число… …   Википедия

  • p-адическое число — Для заданного фиксированного простого числа p p адическое число (произносится: пэ адическое; соответственно: два адическое, три адическое и т.п.) элемент расширения поля рациональных чисел, являющегося пополнением поля рациональных чисел… …   Википедия

  • Число — У этого термина существуют и другие значения, см. Число (значения). Число  основное понятие математики[1], используемое для количественной характеристики, сравнения и нумерации объектов. Возникнув ещё в первобытном обществе из потребностей… …   Википедия

  • Число (матем.) — см. также: Число (лингвистика) Число абстракция, используемая для количественной характеристики объектов. Возникнув ещё в первобытном обществе из потребностей счёта, понятие числа изменялось и обогащалось и превратилось в важнейшее математическое …   Википедия

  • Аксиома Архимеда — для отрезков …   Википедия

  • Список известных уроженцев Кёнигсберга — Западный фасад Кёнигсбергского замка на открытке начала XX века Замок Кёнигсберг был основан Тевтонским орденом в 1255 году, вокруг него образовались три города: Альтштадт, Лёбенихт и Кнайпхоф, которые в 1724 году объединились в единый город… …   Википедия

  • ДИОФАНТОВЫ ПРИБЛИЖЕНИЯ — раздел теории чисел, в к ром изучаются приближения нуля значениями функций от конечного числа целочисленных аргументов. Первоначальные задачи Д. п. касались рациональных приближений к действительным числам, но развитие теории привело к задачам, в …   Математическая энциклопедия

  • ОРТОГОНАЛЬНАЯ ГРУППА — группа всех линейных преобразований n мерного векторного пространства Vнад полем k, сохраняющих фиксированную невырожденную квадратичную форму Q на V(т. е. таких линейных преобразований j, что Q(jn(v))=Q(v) для любого ). О. г. принадлежит к числу …   Математическая энциклопедия

Книги

  • P-адическое число, Джесси Рассел. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. High Quality Content by WIKIPEDIA articles! Для заданного фиксированного простого числа p… Подробнее  Купить за 1125 руб


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»