БОЧЕЧНОЕ ПРОСТРАНСТВО это:

БОЧЕЧНОЕ ПРОСТРАНСТВО

локально выпуклое линейное топология, пространство, обладающее рядом свойств банаховых пространств и Фреше пространств без предположения о метризуемости; это один из наиболее широких классов пространств, в к-рых справедлива Банаха - Штейнхауза теорема. Б. п. были впервые введены Н. Бурбаки (см. [1]).

Множество Авекторного пространства Еназ. уравновешенным множеством, если для всех , для к-рого . Множество наз. поглощающим множеством, если оно поглощает каждую точку из Е, т. е. если для каждого существует такое , что .

Бочкой в линейном топологич. пространстве наз. замкнутое, уравновешенное поглощающее выпуклое множество. Бочечным пространством наз. линейное топологич. пространство, наделенное локально выпуклой топологией, в к-рой всякая бочка является окрестностью нуля. Пространства Фреше и, в частности, банаховы пространства служат примерами Б. <п. Важный класс Б. п., наделенных особенно замечательными свойствами, составляют Монтеля пространства.

Свойства Б. п. Фактор пространство, прямая сумма и индуктивный предел Б. п. являются Б. п. Всякое поточечно ограниченное множество линейных непрерывных изображений Б. п.-в локально выпуклое линейное топологич. пространство равностепенно непрерывно. В пространстве, сопряженном к Б. п., ограниченное множество в слабой топологии будет ограниченным в сильной топологии и компактным в слабой топологии. Замкнутая выпуклая оболочка компактного множества, лежащего в пространстве, сопряженном к Б. п., компактна.

Лит.:[1] Бурбаки Н., Топологические векторные пространства, пер. с франц., М., 1959; [2] Эдварде Р., Функциональный анализ, пер. с англ., М., 1969. В. М. Тихомиров.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "БОЧЕЧНОЕ ПРОСТРАНСТВО" в других словарях:

  • Бочечное пространство — Бочкой в топологическом векторном пространстве называется подмножество, которое радиально выпукло, закруглено и замкнуто. Локально выпуклое пространство называется бочечным, если всякая бочка в нём является окрестностью нуля или, что то же самое …   Википедия

  • МОНТЕЛЯ ПРОСТРАНСТВО — бочечное пространство (в частности, Фреше пространство), в к ром каждое замкнутое ограниченное множество компактно. Пространство всех голоморфных функций в области Gс топологией равномерной сходимости на компактах является пространством Фреше и в …   Математическая энциклопедия

  • ВТОРОЕ СОПРЯЖЕННОЕ ПРОСТРАНСТВО — пространство X", сопряженное к пространству X , сопряженному к отделимому локально выпуклому пространству X, наделенному сильной топологией. Каждый элемент порождает элемент по формуле . Если , то пространство Xназ. рефлексивным. Если X… …   Математическая энциклопедия

  • Стереотипное пространство — В функциональном анализе и связанных областях математики стереотипные пространства представляют собой класс топологических векторных пространств, выделяемый неким специальным условием рефлексивности. Этот класс обладает серией замечательных… …   Википедия

  • УЛЬТРАБОЧЕЧНОЕ ПРОСТРАНСТВО — топологическое векторное пространство Ес топологией t, для к рой любая топология t , обладающая базой окрестностей нуля из t замкнутых множеств, слабее топологии t. Всякое топологич. векторное пространство, не являющееся множеством первой… …   Математическая энциклопедия

  • Монтелевское пространство — В функциональном анализе и смежных областях математики монтелевское пространство, названное в честь Поля Монтеля, это топологическое векторное пространство, в котором справедлив аналог теоремы Монтеля. Более точно, пространство Монтеля это… …   Википедия

  • БЕСКОНЕЧНОМЕРНОЕ ПРЕДСТАВЛЕНИЕ — группы Ли представление группы Ли в бесконечномерном векторном пространстве. Теория представлений групп Ли есть часть общей теории, представлений то пологич. групп. Специфика групп Ли позволяет использовать в этой теории средства анализа (в… …   Математическая энциклопедия

  • ДВОЙСТВЕННОСТЬ — 1) Д. в алгебраической геометрии двойственность между различными пространствами когомологий на алгебраич. многообразиях. Когомологий когерентных пучков. Пусть X неособое проективное алгебраич. многообразие размерности nнад алгебраически замкнутым …   Математическая энциклопедия

  • ЛИНЕЙНЫЙ ОПЕРАТОР — линейное преобразование, отображение между двумя векторными пространствами, согласованное с их линейными структурами. Точнее, отображение где Еи F векторные пространства над полем k, наз. л и н е й н ы м оператором из Ев F, если при всех… …   Математическая энциклопедия

  • ОТКРЫТОЕ ОТОБРАЖЕНИЕ — теорема об открытом отображений: линейный непрерывный оператор А , отображающий банахово пространство Xна все банахово пространство У, является открытым отображением, т. е. A(G).открыто в Yдля любого G, открытого в X; доказана С. Банахом (S.… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»