БОРЕЛЯ МЕРА это:

БОРЕЛЯ МЕРА

множеств- неотрицательная функция m подмножеств топологич. пространства X, обладающая следующими свойствами: 1) область ее определения есть -алгебра борелевских множеств из X, т. е. наименьший класс подмножеств из X, содержащий открытые множества и замкнутый относительно теоретико-множественных операций, производимых в счетном числе; 2) при то есть счетно аддитивна. Б. м. наз. регулярной, если


где принадлежит классу замкнутых подмножеств из X. Нередко изучение Б. м. связывают с изучением мер Бэра, к-рые отличаются от Б. м. лишь областью их определения: они определены на наименьшей -алгебре , относительно к-рой измеримы все непрерывные функции на X. Б. м. (соответственно мера Бэра ) наз. -гладкой, если для любой сети замкнутых множеств, удовлетворяющей условию (соответственно для любой сети множеств, являющихся нулями непрерывных функций, при условии, что Б. м. (соответственно мера Бэра v) наз. п л о тн о и, если , где -класс компактных подмножеств из X(соответственно Плотность и -гладкость являются ограничениями, обеспечивающими дополнительную гладкость мер, и часто выполняются в конкретных .ситуациях. При определенных условиях меры Бэра могут быть продолжены до Б. м. Напр., если Xвполне регулярно и хаусдорфово, то всякая -гладкая (плотная) конечная мера Бэра может быть продолжена до регулярной -гладкой (плотной) конечной Б. м. При изучении мер на локально компактных пространствах Б. м. (соответственно мерами Бэра) наз. иногда меры, определенные на -кольце множеств, порожденном компактными (соответственно компактными ) множествами, и конечные на компактных множествах. Мерой Бореля на прямой часто наз. меру, определенную на борелевских множествах и такую, что ее значение на произвольном отрезке равно длине этого отрезка.

Лит.: [1] Варадарайн В. С., "Матем. сб.", 1961, т. 55, № 1, с. 35-100; [2] Xалмош П., Теория меры, пер. с англ., М., 1953; [3] Невё Ж., Математические основы теории вероятностей, пер. с франц., М., 1969. В. В. Сазонов.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "БОРЕЛЯ МЕРА" в других словарях:

  • МЕРА — множества, обобщение понятия длины отрезка, площади фигуры, объема тела, интуитивно соответствующее массе множества при нек ром распределении массы по пространству. Понятие М. множества возникло в теории функций действительного переменного в… …   Математическая энциклопедия

  • Мера множества — У этого термина существуют и другие значения, см. Мера. Мера множества  неотрицательная величина, интуитивно интерпретируемая как размер (объем) множества. Собственно, мера это некоторая числовая функция, ставящая в соответствие каждому… …   Википедия

  • Мера Жордана — Мера Жордана  один из способов формализации понятия длины, площади и мерного объёма в мерном евклидовом пространстве. Содержание 1 Построение 2 Свойства …   Википедия

  • Жорданова мера — Мера Жордана  один из способов формализации понятия длины, площади и n мерного обьёма в n мерном евклидовом пространстве. Содержание 1 Построение 2 Свойства 3 История …   Википедия

  • Конечно-аддитивная мера — Мера  общее название различных типов обобщений понятий евклидовой длины, площади и n мерного объёма для более общих пространств. Если обратное не указано явно, то обычно подразумевается счётно аддитивная мера. Содержание 1 Определения 1.1 Конечно …   Википедия

  • Конечно аддитивная мера — Мера  общее название различных типов обобщений понятий евклидовой длины, площади и n мерного объёма для более общих пространств. Если обратное не указано явно, то обычно подразумевается счётно аддитивная мера. Содержание 1 Определения 1.1 Конечно …   Википедия

  • ЖОРДАНА МЕРА — параллелепипеда в Rn объем этого параллелепипеда. Для ограниченного множества определяются: внешняя мера Жордана и внутренняя мера Жордана где Dj попарно не пересекаются (здесь Dj параллелепипеды вида (*J). Множество Еназ. измеримым по Жордану… …   Математическая энциклопедия

  • ИЗМЕРИМОЕ МНОЖЕСТВО — подмножество измеримого пространства(X, А), принадлежащее А кольцу или s кольцу его подмножеств. Понятие возникло и развивалось в процессе решения и обобщения проблемы измерения площадей (длин, объемов) различных множеств, т. е. проблемы… …   Математическая энциклопедия

  • Площадь фигуры — У этого термина существуют и другие значения, см. Площадь (значения). Площадь плоской фигуры  аддитивная числовая характеристика фигуры, целиком принадлежащей одной плоскости. В простейшем случае, когда фигуру можно разбить на конечное… …   Википедия

  • Квадрируемая фигура — Площадь фигуры  числовая характеристика фигуры. В простейшем случае, когда фигуру можно разбить на конечное множество единичных квадратов, площадь равна числу квадратов. Содержание 1 Об определении 2 Связанные определения 3 Комментарии …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»