ДРОБНО-ЛИНЕЙНОЕ ОТОБРАЖЕНИЕ

ДРОБНО-ЛИНЕЙНОЕ ОТОБРАЖЕНИЕ

дробно-линейное преобразование,- отображение комплексного пространства С-n, осуществляемое дробно-линейными функциями.

В случае комплексной плоскости С 1=С - это отличное от константы отображение вида

где ad-bс неравно 0;часто применяется унимодулярная нормировка ad-=1. Всякое Д.-л. о. доопределяется соответствиями и до взаимно однозначного отображения расширенной плоскости С на себя. Простейшими среди Д.-л. о. являются линейные: получающиеся при с=0. Всякое нелинейное Д.-л. о. представимо в виде суперпозиции двух линейных отображений и отображения L0:Свойства Д.-л. о. L0 становятся наглядными на Римана сфере, так как при стереографич. проекции ему соответствует поворот сферы на 180° вокруг диаметра, проходящего через образы точек

Основные свойства. Д.-л. о. отображает взаимно однозначно и конформно С на себя. Круговое свойство: при Д.-л. о. любая окружность на С (т. е. окружность на С или прямая, пополненная точкой бесконечности) переходит в окружность на С. Инвариантность отношения симметрии двух точек: пара точек z, z*, симметричных относительно какой-либо окружности на при Д.-л. о. переходит в пару точек w, w*, симметричных относительно образа этой окружности. Двойное отношение четырех точек на С инвариантно относительно Д.-л. о., т. е. если точки x1, x2, x3,x4 при Д.-л. о. переходят соответственно в z1,z2, z3, z4, то

Для любых заданных троек x1, x2,x3 и z1, z2, z3, попарно различных точек на С, существует и притом только одно Д.-л. о., переводящее соответственно k=1, 2, 3.

Это Д.-л. о. можно найти из уравнения (2), подставляя в него zи wсоответственно вместо x4 и z4. Групповое свойство: совокупность всех Д.-л. о. образует некоммутативную группу относительно суперпозиции (L1L2)(z) = L1(L2(z)) с единицей E(z) = z. Свойство универсальности: всякий конформный автоморфизм С есть Д.-л. о., и, таким образом, группа всех Д.-л. о. совпадает с группой Aut С всех конформных автоморфизмов С.

Все конформные автоморфизмы единичного круга . образуют подгруппу Aut Вгруппы Aut С, состоящую из Д.-л. о. вида:

Так же обстоит дело с конформными автоморфизмами верхней полуплоскости {zОC; Im z>0}, имеющими вид:

Все конформные гомеоморфизмы верхней полуплоскости на единичный круг имеют, вид:

Исключив тождественное Д.-л. о. E(z), можно сказать, что Д.-л. о. имеет не более двух различных неподвижных точек x1, x2 на С. В случае двух различных неподвижных точек семейство окружностей 2, проходящих через x1 и x2, переводится Д.-л. о. (1) само в себя. При этом семейство е' всех окружностей, ортогональных к окружностям е, также переходит само в себя. Здесь возможны в свою очередь три случая.

1) Каждая окружность е переходит сама в себя; такое Д.-л. о. наз. гиперболическим, и оно представимо в нормальной форме:

где множитель Д.-л. о. m>0, Унимодулярное Д.-л. о. (1) является гиперболическим тогда и только тогда, когда и |a+d|>2.

2) Каждая окружность 2' переходит сама в себя; такое Д.-л. о. наз. эллиптическим ив нормальной форме (3) характеризуется множителем m таким, что |m| = 1, Унимодулярное Д.-л. о. (1) является эллиптическим тогда и только тогда, когда

|a+d|<2.

3) Ни одна из окружностей семейств 2 и 2' не переходит сама в себя; такое Д.-л. о. называется локсодромическим и в нормальной форме (3) характеризуется множителем таким, что либо

либо m<0. Унимодулярное Д.-л. о. (1) является локсодромическим тогда и только тогда, когда

Если же две неподвижные точки сливаются в одну x1, то Д.-л. о. наз. параболическим. Семейство 2 состоит при этом из всех окружностей, имеющих в x1 общую касательную; каждая окружность 2 переходит сама в себя. Нормальная форма параболичД.-л. о. имеет вид либо

при либо

при Унимодулярное Д.-л. о. (1) является параболическим тогда и только тогда, когда a+d=

Благодаря перечисленным богатым элементарным свойствам, Д.-л. о. находят самое широкое применение во всех разделах теории функций комплексного переменного и в различных прикладных дисциплинах. В частности, Д.-л. о. позволяют построить модель Лобачевского геометрии.

Среди подгрупп общей группы всех Д.-л. о. наиболее важны, с точки зрения их применений для аналитич. теории дифференциальных уравнений, теории автоморфных функций и других вопросов анализа, дискретные группы Г Д.-л. о. Элементарные дискретные группы Д.-л. о.- это конечные группы; они изоморфны либо циклическим группам вращений сферы Римана, либо группам вращений правильных многогранников. Дискретные группы Д.-л. о. Г, имеющие инвариантную окружность уна С, общую для всех преобразований Г, причем внутренность упри всех преобразованиях Г переходит сама в себя, наз. фуксовими группами. Локсодромич. Д.-л. о. не может быть фуксовым. Исторически первым примером фуксовой группы была модулярная группа, возникшая в теории эллиптич. функций (см. также Модулярная функция). Модулярная группа состоит из всех унимодулярных Д.-л. о. (1), у к-рых коэффициенты а, b, с, d- целые действительные числа; действительная ось инвариантна относительно модулярных Д.-л. о. Более сложны и менее изучены неэлементарные группы Д.-л. о., не являющиеся фуксовыми,- клейновы группы.

Д.-л. о. комплексного пространства С n, n>1, наз. невырожденное отображение

осуществляемое дробно-линейными функциями

Наиболее важны те Д.-л. о. С n, к-рые продолжаются в какую-либо компактификацию С n. Так, в пространство теории функций продолжаются все линейные преобразования, переставляющие координаты, а также Д.-л. о. вида

где Lk(zk) - Д.- л. о. вида (1) на плоскости zk. Порождаемая перечисленными отображениями группа Д.-л. о. совпадает с группой Aut всех биголоморфных автоморфизмов компактификации Соответствующая подгруппа Aut Un с

исчерпывает все автоморфизмы единичного поликруга Un={.|zj|<1, j=1, ..., п). В проективное замыкание СР n пространства С n продолжаются Д.-л. о., у к-рых

в однородных координатах это продолжение имеет вид

Этими отображениями исчерпывается группа AutCPn всех биголоморфных автоморфизмов СР". Автоморфизмы единичного шара В п={ ; |z|<l} образуют подгруппу AutBn группы AutCPn, состоящую из всех Д.-л. о. вида (4), у к-рых коэффициенты подчинены известным дополнительным условиям (см. [2], ч. 2). Лит.:[1] Привалов И. И., Введение в теорию функций комплексного переменного, 11 изд., М., 1967; [2] Шабат Б. В., Введение в комплексный анализ, 2 изд., ч. 1-2, М., 1976; [3] Стоилов С, Теория функций комплексного переменного, пер. с рум., т. 1, М., 1962; [4] Форд Л. Р., Автоморфные функции, пер. с англ., М.- л., 1936.

Е. П. Долженко, Е. Д. Соломенцев, Е. М. Чирка.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "ДРОБНО-ЛИНЕЙНОЕ ОТОБРАЖЕНИЕ" в других словарях:

  • Дробно-линейное отображение — Дробно линейная функция функция вида где z = (z1,...,zn) комплексные или вещественные переменные, ai,b,ci,d комплексные или вещественные коэффициенты. Часто термин «дробно линейная функция» используется для её частного случая преобразования… …   Википедия

  • Дробно-линейное преобразование — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Содержание 1 Определение 2 Алгебраические свойства …   Википедия

  • ДРОБНО-ЛИНЕЙНАЯ ФУНКЦИЯ — функция вида где z= (z1, ..., zn) комплексные или действительные переменные, aj, b, с j, d комплексные или действительные коэффициенты, |с 1| + ... + | с n| + |d|>0. Если |с 1| = .. .= |с п| = 0, то Д. л. ф. является целой линейной функцией;… …   Математическая энциклопедия

  • КОНФОРМНОЕ ОТОБРАЖЕНИЕ — взаимно однозначное отображение областей n мерного евклидова пространства, сохраняющее углы между кривыми. К. о. в каждой точке обладает свойством постоянства растяжений по разл. направлениям. При n= З любое (гладкое) К. о. является суперпозицией …   Физическая энциклопедия

  • Группа Мёбиуса — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Содержание 1 Определение 2 Алгебраические свойства …   Википедия

  • Преобразование Кэли — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Содержание 1 Определение 2 Алгебраические свойства …   Википедия

  • Преобразование Мебиуса — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Содержание 1 Определение 2 Алгебраические свойства …   Википедия

  • Преобразования Мёбиуса — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Содержание 1 Определение 2 Алгебраические свойства …   Википедия

  • Преобразование Мёбиуса — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Не следует путать с обращением Мёбиуса. Преобразование Мёбиуса  дробно линейная функция одного комплексного переменного, тождественно не равная константе …   Википедия

  • Инвариант Шварца — Инвариантом Шварца, производной Шварца или шварцианом (иногда используется обозначение ) аналитической функции называется дифференциальный оператор вида Свойства Инвариант Шварца дробно линейной функции равен нулю. Этот …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»