Инварианты это:

Инварианты
(от лат. invarians, родительный падеж invariantis — неизменяющийся)
        числа, алгебраические выражения и т. п., связанные с каким-либо математическим объектом и остающиеся неизменными при определенных преобразованиях этого объекта или системы отсчёта, в которой описывается объект. Чтобы охарактеризовать какую-либо геометрическую фигуру и её положение с помощью чисел, обычно приходится вводить некоторую вспомогательную систему отсчёта или систему координат. Полученные в такой системе числа x1, x2,..., xn характеризуют не только изучаемую геометрическую фигуру, но и её отношение к системе отсчёта, и при изменении этой системы фигуре будут отвечать другие числа x'1, х'2,..., х'n. Поэтому если значение какого-либо выражения f (x1, x2,..., xn) характерно для фигуры самой по себе, то оно не должно зависеть от системы отсчёта, т. е. должно выполняться соотношение
         f (x1, x2,..., xn) = f (x'1, x'2,..., x'n). (1)
        Все выражения, удовлетворяющие соотношению (1), называются инвариантами. Например, положение отрезка M1M2 на плоскости определяется в прямоугольной системе координат двумя парами чисел x1, y1 и x2, y2 — координатами его концов M1 и M2. При преобразовании координатной системы (путём смещения её начала и поворота осей) точки M1 и M2 получают другие координаты x'1, у'1 и x'2, у'2, однако (x1 x2)2 + (y1y2)2 = (x'1x'2)2 + (y'1у'2)2. Поэтому выражение (x1x2)2 + (y1 — — y2)2 является И. преобразования прямоугольных координат. Геометрический смысл этого И. ясен: это квадрат длины отрезка M1M2.
         Кривая 2-го порядка в прямоугольной системе координат задаётся уравнением 2-й степени
         ax2 + 2bxy + cy2 + 2dx + 2ey + f = 0, (2)
        коэффициенты которого можно рассматривать как числа, определяющие кривую. При преобразовании прямоугольных координат эти коэффициенты изменяются, но выражение
         Понятие И. употреблялось ещё немецким математиком О. Гессе (1844), но систематическое развитие теория И. получила у английского математика Дж. Сильвестра (1851—52), предложившего и термин «И.». В течение 2-й половины 19 в. теория И. была одной из наиболее разрабатываемых математических теорий. В процессе развития этой классической теории И. главные усилия исследователей стали постепенно сосредоточиваться вокруг решения нескольких «основных» проблем, наиболее известная из которых формулировалась следующим образом. Рассматриваются И. системы форм, являющиеся целыми рациональными функциями от коэффициентов этих форм. Требуется доказать, что для И. каждой конечной системы форм существует конечный базис, т. е. конечная система целых рациональных И., через которые каждый другой целый рациональный И. выражается в виде целой рациональной функции. Это доказательство для проективных И. было дано в конце 19 в. немецким математиком Д. Гильбертом.
         Весьма плодотворный подход к понятию И. получается, если системы чисел x1, x2,..., xn и x'1, х'2,..., х'n рассматривать не как координаты одной и той же точки относительно различных координатных систем, а как координаты различных точек в одной и той же системе координат, полученных одна из другой движением. Движения пространства образуют группу (См. Группа). И. относительно изменений систем координат являются также И. относительно группы движений. Отсюда путём непосредственного обобщения получается понятие И. любой группы преобразований. Теория таких И. оказывается весьма тесно связанной с теорией групп и в особенности с теорией представлений групп.
         Понятие И. группы преобразований лежит в основе известной систематизации геометрических дисциплин по группам преобразований, И. которых изучаются в этих дисциплинах. Например, И. группы ортогональных преобразований изучаются в обычной евклидовой геометрии, И. аффинных преобразований — в аффинной, И. проективных — в проективной. Весьма общую группу преобразований составляют все взаимно однозначные и непрерывные преобразования. Изучение И. этих так называемых топологических преобразований составляет предмет топологии (См. Топология). В дифференциальной геометрии основное значение имеют дифференциальные И., развитие теории которых привело к созданию тензорного исчисления (См. Тензорное исчисление).
         В 20 в. глубокое влияние на развитие теории И., в частности на развитие тензорного исчисления, оказала теория относительности, в которой инвариантность физических законов относительно группы движений становится одним из руководящих принципов. См. также Инвариантность.
         Лит.: Погорелов А. В.. Аналитическая геометрия, 3 изд., М., 1968; Широков П. А., Тензорный анализ, ч. 1, М.—Л., 1934; Гуревич Г. Б., Основы теории алгебраических инвариантов, М.—Л., 1948; Вейль Г., Классические группы, их инварианты и представления, пер. с англ., М., 1947.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Инварианты" в других словарях:

  • Инварианты — Инвариант термин, используемый в математике и физике, а также в программировании, обозначает нечто неизменяемое. Кроме того, инварианты используются в олимпиадных задачах по математике для школьников. Абстрактная структурная единица языка фонема …   Википедия

  • Инварианты — особое обозначение в математике. Если над целым однородным алгебраическим выражением с двумя переменными x1 и х2 совершено линейное преобразование, т. е. если вместо х1 поставлено α1x1 + α2x2, a вместо x2 поставлено β1x1 + β2x2, то получается… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Инварианты — Источники динамической информации об окружающей наблюдателя обстановке, остающиеся постоянными, несмотря на его перемещения, изменения окружающей обстановки и изменения ретинального образа. Например, скорость изменения размера элементов текстуры… …   Психология ощущений: глоссарий

  • ИНВАРИАНТЫ — абсолютные, сохраняющиеся, фундаментальные в рамках определенной научной теории величины (константы), отношения, формальные преобразования. Например, С скорость света в теории относительности и т. п. (См. абсолют, неизменность) …   Философия науки: Словарь основных терминов

  • ИНВАРИАНТЫ ЛАНДШАФТА — инварианты геосистемы, понятие, введенное В. Б. Сочавой (1978), в основе которого лежит представление о совокупности присущих геосистеме свойств, которые сохраняются неизменными при преобразовании той или иной категории геосистем. Инвариант… …   Экологический словарь

  • ИНВАРИАНТЫ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ — величины, характеризующие эл. магн. поле и не изменяющие своего значения (инвариантные) при переходе от одной инерциальной системы отсчёта к другой. И. э. п., как и само поле, являются ф циями пространственных координат и времени. В вакууме… …   Физическая энциклопедия

  • инварианты системы сил — Величины, остающиеся неизменными при преобразовании данной системы сил в любую ей эквивалентную, равные главному вектору этой системы сил и проекции ее главного момента относительно любого центра на направление главного вектора. Примечание. Если… …   Справочник технического переводчика

  • Инварианты Карминати — В общей теории относительности, инварианты Карминати  Макленахана (Carminati McLenaghan invariants, CM scalars) составляют один из наборов скалярных инвариантов кривизны. Они включают в себя 16 скаляров, получаемых из тензора Римана. Так как …   Википедия

  • Инварианты педагогические — педагогические истины, не подлежащие пересмотру. Например: природа ребенка такая же, как и природа взрослого; любой человек стремится к успеху; неудача тормозит работу и лишает энтузиазма и т.д …   Психолого-педагогический словарь офицера воспитателя корабельного подразделения

  • Инварианты педагогические — педагогические истины, не подлежащие пересмотру. Термин введён в педагогику французским педагогом С. Френе, который разработал 30 инвариантных принципов на основе гуманистической педагоги. Например, природа ребёнка такая же, как и природа… …   Словарь терминов по общей и социальной педагогике

Книги

Другие книги по запросу «Инварианты» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»