Эрмита многочлены это:

Эрмита многочлены
        специальная система многочленов последовательно возрастающих степеней. Для n = 0,1,2,... Э. м. Hn (x) могут быть определены формулой:
        
         В частности, Ho = 1, H1 = 2х. H2 = 4x2 — 2, H3 = 8x3 — 12x, H4 = 16х4 — 48х2 + 12. Э. м. ортогональны на всей оси Ox относительно веса е (Ортогональные многочлены). Дифференциальное уравнение для у = Hn (x).
         y " — 2ху' + 2ny = 0;
         рекуррентные формулы:
         Hn+1 (х) — 2xHn (x) + 2nHn-1 (х) = 0,
        
         Иногда за Hn принимают многочлены, отличающиеся от указанных выше множителями, зависящими от n, а иногда в качестве веса берут Чебышевым (1859) и Ш. Эрмитом (1864).

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Эрмита многочлены" в других словарях:

  • ЭРМИТА МНОГОЧЛЕНЫ — многочлены Чебышева Эрмита, многочлены, ортогональные на интервале с весовой функцией k(x)=ехр( х 2). Стандартизованные Э. м. определяются Родрига формулой Наиболее употребительны формулы Первые Э. м. имеют вид Многочлен Hn (х)удовлетворяет… …   Математическая энциклопедия

  • Многочлены Эрмита — Многочлены Эрмита  определённого вида последовательность многочленов одной вещественной переменной. Многочлены Эрмита возникают в теории вероятностей, в комбинаторике, физике. Эти многочлены названы в честь Шарля Эрмита. Содержание 1… …   Википедия

  • Многочлены Чебышёва — две последовательности многочленов Tn(x) и Un(x), названные в честь Пафнутия Львовича Чебышёва. Многочлены Чебышёва играют важную роль в теории приближений, поскольку корни многочленов Чебышёва первого рода используются в качестве узлов в… …   Википедия

  • Многочлены Полачека — Многочлены Полачека  последовательность многочленов , которые были рассмотрены Полачеком в 1950 году. Рекурсивное определение …   Википедия

  • Многочлены Чебышева — Многочлены Чебышева  две последовательности ортогональных многочленов и , названные в честь Пафнутия Львовича Чебышева. Многочлены Чебышева играют важную роль в теории приближений, поскольку корни многочленов Чебышева первого рода… …   Википедия

  • Многочлены Лежандра — Многочлен Лежандра  многочлен, который в наименьшей степени отклоняется от нуля в смысле среднего квадратического. Образует ортогональную систему многочленов, на отрезке по мере Лебега. Многочлены Лежандра могут быть получены из многочленов… …   Википедия

  • Многочлены Лагерра — В математике, Многочлены Лагерра, названные в честь Эдмона Лагерра (1834 1886), являются каноническими решениями Уравнения Лагерра: являющегося линейным дифференциальным уравнением второго порядка. Многочлены Лагерра также используются в… …   Википедия

  • Многочлены Якоби — Полиномы Якоби класс ортогональных полиномов. Названы в честь Карла Густава Якоба Якоби. Ортогональные полиномы Якоби Открыты Якоби, Карл Густав Якоб Формула …   Википедия

  • Многочлены Кравчука — ( М. Ф. Кравчук, 1929) относятся к классическим ортогональным полиномам дискретной переменной на равномерной сетке, для которых соотношение ортогональности представляет собой не интеграл, а ряд или конечную сумму: . Здесь   весовая …   Википедия

  • ЭРМИТА ФУНКЦИИ — решения Эрмита уравнения Э. ф. имеют вид где C1 контур в комплексной плоскости t, состоящий из лучей и полуокружности |t|=а>0, С 2= С1. Полусумма этих решений при целом равна Эрмита многочлену Hn(z). Уравнением Эрмита наз. также уравнение …   Математическая энциклопедия

Книги

Другие книги по запросу «Эрмита многочлены» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»