Упорядоченные и частично упорядоченные множества это:

Упорядоченные и частично упорядоченные множества
(математичексие)
        множества, в которых каким-либо способом установлен порядок следования их элементов или, соответственно, частичный порядок. Понятия порядка и частичного порядка следования элементов определяются следующим образом. Говорят, что для пары элементов х, у множества М установлен порядок, если указано, который из этих элементов следует за другим (если у следует за х или, что то же самое, х предшествует у, то пишут х π у, у ). Говорят, что в множестве М установлен частичный порядок следования элементов, если для некоторых пар его элементов установлен порядок, причём выполнены следующие условия: 1) никакой элемент не следует сам за собой; 2) если х π у и у π z, то х π z (транзитивность отношения порядка). Может случиться, что в частично упорядоченном множестве М порядок не установлен ни для какой пары элементов М. С др. стороны, может случиться, что порядок установлен для всех пар различных элементов М, в этом случае частичный порядок следования элементов, установленный в множестве М, называют просто порядком следования элементов, или линейным порядком (упорядоченные множества, таким образом, являются видом частично упорядоченных множеств). Например, будем считать, что комплексное число a’ + b’i следует за комплексным числом и а + bi, если a’ > a и b’ > b. Любое множество комплексных чисел становится тогда частично упорядоченным. В частности, частично упорядоченным становится любое множество действительных чисел (рассматриваемых как специальный случай комплексных). Т. к. при этом порядок следования таков, что действительное число a’ следует за действительным числом а тогда и только тогда, когда a’ больше а, то всякое множество действительных чисел оказывается даже просто упорядоченным. Понятия частично упорядоченного (иначе – полуупорядоченного) и упорядоченного множества принадлежат к числу основных общих понятий математики (см. Множеств теория),
         Вполне упорядоченные множества. Упорядоченное множество называется вполне упорядоченным, если каждое его подмножество обладает первым элементом (т. е. элементом, за которым следуют все остальные). Все конечные упорядоченные множества вполне упорядочены. Натуральный ряд, упорядоченный по возрастанию (а также некоторыми др. способами), образует вполне упорядоченное множество. Важность вполне упорядоченных множеств определяется главным образом тем, что для них справедлив принцип трансфинитной индукции (см. Трансфинитные числа).
         Упорядоченные множества, имеющие одинаковый порядковый тип, обладают и одинаковой мощностью, так что можно говорить о мощности данного порядкового типа. С др. стороны, конечные упорядоченные множества одинаковой мощности имеют один и тот же порядковый тип, так что каждой конечной мощности соответствует определённый конечный порядковый тип. Положение меняется при переходе к бесконечным множествам. Два бесконечных упорядоченных множества могут иметь одну и ту же мощность, но разные порядковые типы.
         Направленные множества. Частично упорядоченное множество называется направленным, если для всяких его элементов х и у существует такой элемент z, что z ϕ̲ х и z ϕ̲ у (a ϕ̲ b означает, что либо a ϕ̲ b, либо а = b). Понятие направленного множества позволяет дать весьма общее определение предела. Пусть f (p) - числовая (для простоты) функция, заданная на направленном множестве М; число с называется пределом f (p) по направленному множеству М, если для всякого ε > 0 найдётся такой элемент , что для всех p из М таких, что р р выполняется неравенство Предела и охватывает весьма широкий класс частных случаев.
         Историческая справка. Теорию упорядоченных множеств создал Г. Кантор. В 1883 он ввёл понятие вполне упорядоченного множества и порядкового числа, а в 1895 – понятие упорядоченного множества и порядкового типа. В 1906–07 С. О. Шатуновский сформулировал определения направленного множества (у Шатуновского – расположенный комплекс) и предела по направленному множеству (амер. математиками Э. Г. Муром и Г. Л. Смитом эти же понятия были рассмотрены независимо от Шатуновского, но значительно позднее – в 1922). Общее понятие частично упорядоченного множества принадлежит Ф. Хаусдорфу (1914).
         Лит.: Александров П. С., Введение в общую теорию множеств и функций, М. – Л., 1948; Курош А. Г., Лекции по общей алгебре, 2 изд., М., 1973; Хаусдорф Ф., Теория множеств, пер. с нем., М. – Л., 1937; Куратовский К., Мостовскиq А., Теория множеств, пер. с англ., М., 1970; Бурбаки Н., Теория множеств, пер. с франц., М., 1965.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Упорядоченные и частично упорядоченные множества" в других словарях:

  • Упорядоченные и частично упорядоченные множества — В математике частично упорядоченным множеством называется множество, на котором определено отношение частичного порядка. Неформально можно сказать, что это отношение вводит некую иерархию элементов множества, выстраивает зависимости между ними,… …   Википедия

  • Частично упорядоченное множество — (матем.)         см. Упорядоченные и частично упорядоченные множества …   Большая советская энциклопедия

  • Частично упорядоченное множество — У этого термина существуют и другие значения, см. Упорядоченное множество. Подмножества {x, y, z}, упо …   Википедия

  • ЧАСТИЧНО УПОРЯДОЧЕННАЯ ГРУППА — группа G, на к рой задано отношение частичного порядка такое, что для любых а, b, х, у из G неравенство влечет за собой Множество Ч. у. г., называемое положительным конусом, или целой частью, группы G, обладает свойствами: 1) 2) 3) для любых… …   Математическая энциклопедия

  • Трансфинитные числа — (от Транс… и лат. finitus ограниченный)         обобщённые порядковые числа. Определение Т. ч. опирается на понятие вполне упорядоченного множества (см. Упорядоченные и частично упорядоченные множества). Каждое конечное множество можно сделать… …   Большая советская энциклопедия

  • Структура — I Структура (лат. structura строение, расположение)         определённая взаимосвязь, взаиморасположение составных частей; строение, устройство чего либо. II Структура         совокупность устойчивых связей объекта, обеспечивающих его целостность …   Большая советская энциклопедия

  • Структура (матем.) — Структура, решётка (математическая); важное алгебраическое понятие. С. называется непустое множество S, для элементов которого определены две операции объединение и пересечение, обозначаемые соответственно значками È и Ç (т. е.… …   Большая советская энциклопедия

  • Сходимость —         математическое понятие, означающее, что некоторая переменная величина имеет Предел. В этом смысле говорят о С. последовательности, С. ряда, С. бесконечного произведения, С. непрерывной дроби, С. интеграла и т. д. Понятие С. возникает,… …   Большая советская энциклопедия

  • Отношение (математика) — У этого термина существуют и другие значения, см. Отношение. Отношение  математическая структура, которая формально определяет свойства различных объектов и их взаимосвязи. Отношения обычно классифицируются по количеству связываемых объектов …   Википедия

  • Непрерывность по Скотту — в математике свойство функций над частично упорядоченными множествами, выражающееся в сохранении точной верхней грани относительно отношения частичного порядка. Топология Скотта структура над полной решёткой или, в более общем случае, над полным… …   Википедия

Книги

Другие книги по запросу «Упорядоченные и частично упорядоченные множества» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»