Ортогональное преобразование это:

Ортогональное преобразование
        Линейное преобразование евклидова векторного пространства, сохраняющее неизменным длины или (что эквивалентно этому) скалярное произведение векторов. В ортогональном и нормированном базисе О. п. соответствует Ортогональная матрица. О. п. образуют группу (См. Группа) — т.н. группу вращений данного евклидова пространства вокруг начала координат. В трёхмерном пространстве О. п. сводится к повороту на некоторый угол вокруг некоторой оси, проходящей через начало координат О, если определитель соответствующей ортогональной матрицы равен +1. Если же этот определитель равен —1, то поворот дополняется зеркальным отражением относительно плоскости, проходящей через О и перпендикулярной оси поворота. В двумерном пространстве, т. е. в плоскости, О. п. определяет поворот на некоторый угол вокруг начала координат О или зеркальное отражение относительно некоторой прямой, проходящей через О. Используется О. п. при приведении к главным осям квадратичной формы (См. Квадратичная форма). См. также Матрица, Векторное пространство.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Ортогональное преобразование" в других словарях:

  • Ортогональное преобразование — Ортогональное преобразование  линейное преобразование евклидова пространства , сохраняющее длины или (что эквивалентно) скалярное произведение векторов. Это означает, что для любых двух векторов выполняется равенство где треугольными… …   Википедия

  • ортогональное преобразование — (МСЭ Т J.240). [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN orthogonal transformOT …   Справочник технического переводчика

  • ортогональное преобразование — линейное преобразование евклидова векторного пространства, сохраняющее неизменными длины или (что эквивалентно этому) скалярные произведения векторов. * * * ОРТОГОНАЛЬНОЕ ПРЕОБРАЗОВАНИЕ ОРТОГОНАЛЬНОЕ ПРЕОБРАЗОВАНИЕ, линейное преобразование… …   Энциклопедический словарь

  • ортогональное преобразование — ortogonalioji transformacija statusas T sritis fizika atitikmenys: angl. orthogonal transformation vok. orthogonale Transformation, f rus. ортогональное преобразование, n pranc. transformation orthogonale, f …   Fizikos terminų žodynas

  • ОРТОГОНАЛЬНОЕ ПРЕОБРАЗОВАНИЕ — линейное преобразование Аевклидова пространства, сохраняющее длины или (что эквивалентно этому) скалярное произведение векторов. О. п. и только они переводят ор тонормированный базис в ортонормированный. Необходимым и достаточным условием… …   Математическая энциклопедия

  • ОРТОГОНАЛЬНОЕ ПРЕОБРАЗОВАНИЕ — линейное преобразование евклидова векторного пространства, сохраняющее неизменными длины или (что эквивалентно этому) скалярные произведения векторов …   Естествознание. Энциклопедический словарь

  • Преобразование Карунена-Лоэва — Метод Главных Компонент (англ. Principal components analysis, PCA)  один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ. Karl Pearson) в 1901 г. Применяется во многих… …   Википедия

  • Преобразование Кархунена-Лоэва — Метод Главных Компонент (англ. Principal components analysis, PCA)  один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ. Karl Pearson) в 1901 г. Применяется во многих… …   Википедия

  • Преобразование Карунена - Лоэва — Метод Главных Компонент (англ. Principal components analysis, PCA)  один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ. Karl Pearson) в 1901 г. Применяется во многих… …   Википедия

  • Преобразование Кархунена - Лоэва — Метод Главных Компонент (англ. Principal components analysis, PCA)  один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном (англ. Karl Pearson) в 1901 г. Применяется во многих… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»