Линейчатая геометрия

Линейчатая геометрия
        раздел геометрии, в котором рассматриваются в качестве элементов пространства прямые линии. Как известно, прямая в пространстве определяется четырьмя постоянными — коэффициентами а, b, р, q в уравнениях х = az + р, у = bz + q. Следовательно, величины а, b, р, q можно рассматривать как координаты прямой. Если эти координаты являются функциями одного, двух или трёх параметров, то соответствующие совокупности прямых образуют линейчатые поверхности (См. Линейчатая поверхность) и т. н. конгруэнции и комплексы прямых. Эти геометрические образы и являются объектом изучения Л. г. Примером линейчатой поверхности может служить однополостный гиперболоид, примером конгруэнции — совокупность общих касательных к двум каким-либо поверхностям, примером комплекса прямых — совокупность касательных к одной какой-либо поверхности.
         Для изучения линейчатых поверхностей, конгруэнций и комплексов прямых с единой точки зрения в Л. г. вводятся так называемые линейные однородные координаты прямой. Пусть заданы две точки M1(x1, y1, z1) и M2(x2, y2, z2), тогда линейными однородными координатами прямой, проходящей через эти точки, называют шесть чисел, пропорциональных (или равных) числам:
         ξ1= x1 — x2, ξ2 = y1 — y2, ξ3 = z1 — z2, ξ4 = y1z2 — y2z1, ξ5 = x2z1 — x1z2, ξ6 = x1y2 — x2y1.
         Числа ξ1, ξ2, ξ3 являются компонентами вектора 4, ξ5, ξ6 — компоненты момента этого вектора относительно начала координат. Легко проверить, что числа ξi удовлетворяют соотношению
         ξ1ξ4 + ξ2ξ5 + ξ3ξ6 = 0. (1)
         Таким образом, каждой прямой соответствуют шесть определяемых с точностью до постоянного множителя чисел ξi, удовлетворяющих соотношению (1), и обратно, числа ξi (не все равные нулю), связанные условием (1), определяют единственным образом некоторую прямую (как её координаты в указанном выше смысле). Одно однородное линейное уравнение
        
         определяет линейный комплекс — совокупность прямых, заполняющих пространство так, что через каждую точку пространства проходит пучок прямых, лежащих в одной плоскости. Таким образом, каждой точке («полюсу») пространства можно поставить в соответствие плоскость («полярную плоскость»), содержащую все прямые комплекса, проходящую через эту точку. Это соответствие называют нулевой системой; оно аналогично соответствию полюсов и полярных плоскостей поверхности 2-го порядка. Если полярные плоскости всех точек пространства проходят через одну прямую (ось), то комплекс состоит из всех прямых, пересекающих ось; его называют специальным линейным комплексом. В этом случае коэффициенты уравнения (2) удовлетворяют условию
         a1a4 + a2a5 + a3a6 = 0.
         Система двух однородных линейных уравнений вида (2) определяет линейную конгруэнцию — совокупность прямых, пересекающих две данные прямые (которые могут быть и мнимыми). Три однородных линейных уравнения определяют линейчатую поверхность, являющуюся в этом случае либо однополостным гиперболоидом, либо гиперболическим параболоидом.
         Линейные однородные координаты прямой были введены Ю. Плюккером в 1846. Он же подробно изучил теорию линейного комплекса. В дальнейшем Л. г. разрабатывалась в работах Ф. Клейна и русского математика А. П. Котельникова. Дифференциальная геометрия конгруэнций, начатая Э. Куммером в 1860, получила большое развитие в трудах итальянских математиков Л. Бианки, Г. Санниа и французского математика А. Рибокура. На основе созданного в 1895 Котельниковым «винтового» исчисления советским математиком Д. Н. Зейлигером развита теория линейчатых поверхностей и конгруэнций. Проективная теория конгруэнций построена в 1927 советским математиком С. П. Финиковым.
        
         Лит.: Зейлигер Д. Н., Комплексная линейчатая геометрия. Поверхности и конгруэнции, Л. — М., 1934; Фиников С. П., Теория поверхностей, М. — Л., 1934; его же, Проективно-дифференциальная геометрия, М. — Л.,1937; его же, Теория конгруэнций, М. — Л., 1950; Каган В. Ф., Основы теории поверхностей в тензорном изложении, ч. 1—2, М. — Л., 1947—48; Клейн Ф., Высшая геометрия, пер. с нем., М. — Л., 1939; Zindler К., Liniengeometrie, Bd 1—2, Lpz., 1902—06.
         Э. Г. Позняк.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "Линейчатая геометрия" в других словарях:

  • Линейчатая поверхность —         совокупность прямых, зависящая от одного параметра; Л. п. можно описать движением прямой (образующей) по некоторой линии (направляющей). Л. п. разделяются на развёртывающиеся и косые.          Развёртывающиеся Л. п. могут быть посредством …   Большая советская энциклопедия

  • Линейчатая поверхность — Линейчатый геликоид …   Википедия

  • ЛИНЕЙЧАТАЯ ПОВЕРХНОСТЬ — в дифференциальной геометрии поверхность, образованная движением прямой линии. Прямые, принадлежащие этой поверхности, называются прямолинейными образующими, а каждая кривая, пересекающая все прямолинейные образующие, направляющей кривой. Если… …   Математическая энциклопедия

  • Зейлигер, Дмитрий Николаевич — Зейлигер Дмитрий Николаевич Дата рождения: 24 мая 1864(1864 05 24) Место ро …   Википедия

  • ВИНТОВОЕ ИСЧИСЛЕНИЕ — раздел векторного исчисления, в к ром изучаются операции над винтами упорядоченными парами коллинеарных векторов (r, r°), приложенных началами к одной точке. Вектор rназ. вектором винта; ось, определенная этим вектором, осью винта, моментом… …   Математическая энциклопедия

  • Зейлигер, Дмитрий Николаевич — профессор механики; род. в 1864 г.; окончил курс на физико математическом факультете Новороссийского унив., где в 1891 г. получил степень магистра прикладной механики за диссертацию "Механика подобно изменяемого тела. Статика"… …   Большая биографическая энциклопедия

  • ПОВЕРХНОСТЕЙ ТЕОРИЯ — раздел дифференциальной геометрии, в к ром изучаются поверхности. Н П. т. исследуются форма поверхности, ее искривление, свойства различного рода линий на поверхности, рассматриваются вопросы изгибания, вопросы существования поверхности с данными …   Математическая энциклопедия

  • КВАДРИКА — 1) К. поверхность 2 го порядка. В трехмерном пространстве (проективном, аффинном или евклидовом) К. есть множество точек, однородные координаты х 0, х 1, х 2, х 3 к рых (относительно проективной, аффинной или декартовой системы координат)… …   Математическая энциклопедия

  • АЛГЕБРАИЧЕСКАЯ КРИВАЯ — алгебраическое многообразие размерности 1. А. к. является наиболее изученным объектом алгебраической геометрии. В дальнейшем под А. к. понимается, как правило, неприводимая А. к. над алгебраически замкнутым полем. Наиболее простым и интуитивно… …   Математическая энциклопедия

  • КЭЛИ ПОВЕРХНОСТЬ — алгебраическая линейчатая поверхность, являющаяся поверхностью переноса с сетями переноса. Ее уравнение в декартовых координатах Название в честь А. Кэли [1], рассматривавшего эту поверхность как гсометрич. иллюстрацию своих исследований по… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»