КВАДРИКА

КВАДРИКА

- 1) К.- поверхность 2-го порядка. В трехмерном пространстве (проективном, аффинном или евклидовом) К. есть множество точек, однородные координаты х 0, х 1, х 2, х 3 к-рых (относительно проективной, аффинной или декартовой системы координат) удовлетворяют однородному уравнению 2-й степени:

Билинейная симметричная форма

наз. полярной формой относительно F(x). Две точки М'( х'0, х'1, х'2, х'3), М"( х"0, х"1, х"2, х"3), для которых Ф ( х', х") =0, наз. полярно сопряженными точками относительно К. Если прямая ( М', М" )пересекает К. в точках N1, N2 и точки М', М" полярно сопряжены относительно К., то точки N1, N2 и М', М" образуют гармоническую четверку. Точки К. и только они являются самосопряженными. Прямая, каждая точка к-рой принадлежит К., наз. прямолинейной образующей К. Полюсом данной плоскости относительно К. наз. точка, полярно сопряженная со всеми точками этой плоскости. Множество точек пространства, полярно сопряженных с данной точкой М' относительно К., наз. полярой точки М' относительно К. Касательная плоскость к К.- поляра точки касания. Поляра точки М' определяется линейным уравнением Ф ( х, х') =0относительно координат х 0, х 1, х 2, х 3. Если то поляра точки М'- плоскость; если то поляра точки М'- все пространство. В этом случае точка М' принадлежит К. и наз. ее особой точкой. Если число R = rang(aij) = 4, то К. не имеет особых точек и наз. невырождающейся К. В проективном пространстве это - мнимый овалоид, действительный овалоид или линейчатая К. Невырождающаяся К. определяет корреляцию - биективное отображение множества точек проективного пространства на множество плоскостей. Линейчатая невырождающаяся К. имеет два различных семейства прямолинейных образующих, расположенных на К. так, что всякие две прямые одного семейства не пересекаются, а две прямые разных семейств пересекаются в одной точке. Если R=3, то К. является конусом (действительным или мнимым) с вершиной в единственной особой точке. Действительный конус имеет единственное семейство прямолинейных образующих, проходящих через его вершину. Если R=2, то К. распадается на пару плоскостей (действительных или мнимых), пересекающихся по прямой, состоящей из особых точек. Если R=1, то К. является сдвоенной действительной плоскостью, образованной особыми точками К. Аффинные свойства К. выделяются спецификой расположения К., ассоциированных с ней точек, прямых и плоскостей относительно выделенной плоскости x0=0 - несобственной плоскости. Напр., эллипсоид (гиперболоид, параболоид) - невырожденная К., не пересекающая (пересекающая, касающаяся) несобственную плоскость. Центр К.- полюс несобственной плоскости; диаметр - прямая, полярно сопряженная несобственной прямой.

Лит.:[1] Фиников С. П., Аналитическая геометрия, 2 изд., М., 1952; [2] Ефимов Н. В., Краткий курс аналитической геометрии, 5 изд., М., 1960.

В. С. Малаховский.

2) К. в алгебраической геометрии - проективное алгебраическое многообразие, определяемое однородным квадратным уравнением

в проективном пространстве Р п над основным полем k. Пусть далее основное поле алгебраически замкнуто с характеристикой, не равной 2. Пусть Q- К. в Р п и s(Q)- множество ее особых точек. Тогда s(Q)- пустое множество, если и только если rk(Q)=n+l, где rk(Q)- ранг соответствующей квадратичной формы. Если s{Q )не пусто, то Q- конус над гладкой К. размерности rk(Q)-1, вершиной к-рого является проективное подпространство s(Q)в Р п размерности п-rk(Q). Все К. с rk(Q)=r проективно эквиваленты К.

Пусть s (Q)пусто и - линейное подпространство максимальной размерности (оно наз. образующей квадрики Q), тогда

а) если dim Q=2m, то dim E=m;

б) если dim Q=2m+1, то dim E=m.

Кроме того, семейство всех подпространств Емаксимальной размерности на Qявляется замкнутым неособым подмножеством Gграссманова многообразия подпространств размерности dim Eв Р п, причем, если dim Q-2m, то Gi, i=i,2,- непересекающиеся неособые неприводимые рациональные многообразия одинаковой размерности (2m+1), a Eи Е' принадлежат одной и той же компоненте, если и только если

Если же dim Q=2m+l, то Gявляется неособым и неприводимым рациональным многообразием размерности (2m+2)-

В случае, когда s(Q)пусто и dim Q=2, если же то

Любая К. рациональна: бирациональный изоморфизм К. Qс проективным пространством задается стереографич. проекцией К. Qиз нек-рой точки

Многообразия, являющиеся полными пересечениями К., изучаются с точки зрения бирациональной геометрии [3]. Пересечения двух К. изучены в [2], трех - в [4].

Любое проективное многообразие Xможет быть так погружено в проективное пространство PN (для достаточно большого N), что его образ является пересечением (как правило, неполным) К., его содержащих [1].

Изучение К. над незамкнутыми полями тесно связано с арифметикой квадратичных форм.

Лит.:[1] Mumlord D., С. I. M. E. III ciclo. Varenna, 1969, Roma, 1970, p. 29-100; [2] Reid M., The complete intersection of two or more quadrics, These D. Ph. Cambridge Univ., 1972; [3] Roth L., Algebraic threefols (with special regard to problems of rationality), B.-Hdlb.-N.Y., 1955; [4] Тюрин А. Н., "Успехи матем. наук", 1975, т. 30, № 6, с. 51-99.

В. А. Искоеских.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем написать курсовую
Синонимы:

Полезное


Смотреть что такое "КВАДРИКА" в других словарях:

  • квадрика — сущ., кол во синонимов: 1 • многообразие (9) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • Квадрика — В алгебраической геометрии, квадрика проективное алгебраическое многообразие, которое можно задать однородным квадратным уравнением. 2) Квадрика поверхность 2 го порядка. В трехмерном пространстве (проективном, аффинном или евклидовом) квадрика… …   Википедия

  • квадрика — квадр ика, и (матем.) …   Русский орфографический словарь

  • квадрика — іменник жіночого роду …   Орфографічний словник української мови

  • СОПРИКАСАЮЩАЯСЯ КВАДРИКА — поверхность 2 го порядка, имеющая с поверхностью в данной ее точке касание 2 го порядка. Примерами С. к. являются Дарбу квадрика, Ли квадрика. В. С. Малаховский …   Математическая энциклопедия

  • ЛИ КВАДРИКА — одна из соприкасающихся квадрик к поверхности в геометрии эквиаффинной или проективной группы. В гиперболич. точке М 0 она определяется следующим образом. Пусть дано векторное поле vi(t). вдоль линии L: и i(t), к рая является асимптотической (или …   Математическая энциклопедия

  • ДАРБУ КВАДРИКА — поверхность 2 го порядка, имеющая с поверхностью Sтрехмерного проективного пространства Р 3 касание 2 го порядка в точке x, и у к рой линия пересечения с поверхностью Sимеет точку хособой точкой специального типа. Из множества квадрик, имеющих с… …   Математическая энциклопедия

  • КВАЗИГИПЕРБОЛИЧЕСКОЕ ПРОСТРАНСТВО — проективное n пространство, в к ром метрика определяется абсолютом, заданным совокупностью абсолютного конуса Q0 индекса kс (n т 1) вершиной (абсолютная плоскость Т а )и (n m 2) квадрикой (абсолютная квадрика Q1) индекса lна этой (n m 1)… …   Математическая энциклопедия

  • КВАЗИЭЛЛИПТИЧЕСКОЕ ПРОСТРАНСТВО — проективное га пространство, проективная метрика к рого определяется абсолютом, состоящим из совокупности мнимого конуса (абсолютный конус Q0 )с (п т 1) вершиной (абсолютная плоскость Т 0 )и мнимой (n m 2) квадрикой Q1 на этой (n т 1) плоскости… …   Математическая энциклопедия

  • ФИГУР МНОГООБРАЗИЕ — многообразие, образующими элементами к рых являются различные фигуры рассматриваемого однородного пространства. С аналитич. точки зрения наиболее простыми фигурами являются алгебраич. линии и поверхности. Поэтому в основном исследовались… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»