- Десятичный логарифм
-
Десятичный логарифм — логарифм по основанию 10. Другими словами, десятичный логарифм числа
есть решение уравнения
Десятичный логарифм числа
существует, если
Принято (спецификация ISO 31-11) обозначать его
. Примеры:
В зарубежной литературе, а также на клавиатуре калькуляторов встречаются и другие обозначения десятичного логарифма:
, причём следует иметь в виду, что первые 2 варианта могут относиться и к натуральному логарифму.
Содержание
Алгебраические свойства
В нижеследующей таблице предполагается, что все значения положительны[1]:
Формула Пример Произведение Частное от деления Степень Корень Существует очевидное обобщение приведенных формул на случай, когда допускаются отрицательные переменные, например:
Формула для логарифма произведения без труда обобщается на произвольное количество сомножителей:
Вышеописанные свойства объясняют, почему применение логарифмов (до изобретения калькуляторов) существенно облегчало вычисления. Например, умножение многозначных чисел
с помощью логарифмических таблиц[⇨] производилось по следующему алгоритму:
- Найти в таблицах логарифмы чисел
.
- Сложить эти логарифмы, получая (согласно первому свойству) логарифм произведения
.
- По логарифму произведения найти в таблицах само произведение.
Деление, которое без помощи логарифмов намного более трудоёмко, чем умножение, выполнялось по тому же алгоритму, лишь с заменой сложения логарифмов на вычитание. Аналогично производились возведение в степень и извлечение корня.
Связь десятичного и натурального логарифмов[2]:
Знак логарифма зависит от логарифмируемого числа: если оно больше 1, логарифм положителен, если оно между 0 и 1, то отрицателен. Пример:
Чтобы унифицировать действия с положительными и отрицательными логарифмами, у последних целая часть (характеристика) надчёркивалась сверху:
Мантисса логарифма, выбираемая из таблиц, при таком подходе всегда положительна.
Функция десятичного логарифма
Если рассматривать логарифмируемое число как переменную, мы получим функцию десятичного логарифма:
. Она определена при всех
. Область значений:
. График этой кривой часто называется логарифмикой[3].
Функция монотонно возрастает, непрерывна и дифференцируема всюду, где она определена. Производная для неё даётся формулой:
Ось ординат
является левой вертикальной асимптотой, поскольку:
Применение
Логарифмы по основанию 10 до изобретения в 1970-е годы компактных электронных калькуляторов широко применялись для вычислений. Как и любые другие логарифмы, они позволяли многократно упростить и облегчить трудоёмкие расчёты, заменяя умножение на сложение, а деление на вычитание; аналогично упрощались возведение в степень и извлечение корня. Но десятичные логарифмы обладали преимуществом перед логарифмами с иным основанием: целую часть
логарифма числа
(характеристику логарифма) легко определить.
- Если
то
на 1 меньше числа цифр в целой части числа
. Например, сразу очевидно, что lg 345 находится в промежутке (2, 3).
- Если
то ближайшее к
целое (в меньшую сторону) равно общему числу нулей в
перед первой ненулевой цифрой, взятому со знаком минус. Например, lg 0,0014 находится в интервале (-3, -2).
Кроме того, при переносе десятичной запятой в числе на
разрядов значение десятичного логарифма этого числа изменяется на
Например:
Отсюда следует, что достаточно составить таблицу мантисс (дробных частей) десятичных логарифмов для чисел в диапазоне от 1 до 10. Такие таблицы, начиная с XVII века, выпускались большим тиражом и служили незаменимым расчётным инструментом учёных и инженеров.
Поскольку применение логарифмов для расчётов с появлением вычислительной техники почти прекратилось, в наши дни десятичный логарифм в значительной степени вытеснен натуральным[4]. Он сохраняется в основном в тех математических моделях, где исторически укоренился — например, при построении логарифмических шкал.
Десятичные логарифмы для чисел вида 5 × 10n Число логарифм характеристика мантисса запись n lg(n) C = floor(lg(n) ) M = (lg(n) − характеристика) 5 000 000 6.698 970... 6 0.698 970... 6.698 970... 50 1.698 970... 1 0.698 970... 1.698 970... 5 0.698 970... 0 0.698 970... 0.698 970... 0.5 −0.301 029... −1 0.698 970... 1.698 970... 0.000 005 −5.301 029... −6 0.698 970... 6.698 970... Обратите внимание, что у всех приведенных в таблице чисел одна и та же мантисса.
История
Первые таблицы десятичных логарифмов опубликовал в 1617 году оксфордский профессор математики Генри Бригс для чисел от 1 до 1000, с восемью (позже — с четырнадцатью) знаками. Поэтому за рубежом десятичные логарифмы часто называют бригсовыми. Но в этих и в последующих изданиях таблиц обнаружились ошибки. Первое безошибочное издание на основе таблиц Георга Веги (1783) появилось только в 1857 году в Берлине (таблицы Бремикера, Carl Bremiker)[5].
В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого[6]. В СССР выпускались несколько сборников таблиц логарифмов[7]:
- Брадис В. М. Четырехзначные математические таблицы. М.: Дрофа, 2010, ISBN 978-5-358-07433-0. Таблицы Брадиса, издаваемые с 1921 года, использовались в учебных заведениях и в инженерных расчётах, не требующих большой точности. Они содержали мантиссы десятичных логарифмов чисел и тригонометрических функций, натуральные логарифмы и некоторые другие полезные расчётные инструменты.
- Вега Г. Таблицы семизначных логарифмов, 4-е издание, М.: Недра, 1971. Профессиональный сборник для точных вычислений.
Литература
- Теория логарифмов
- Выгодский М. Я. Справочник по элементарной математике. — изд. 25-е. — М.: Наука, 1978. — ISBN 5-17-009554-6
- Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с.
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. — изд. 6-е. — М.: Наука, 1966. — 680 с.
- История логарифмов
- Клейн Ф. Элементарная математика с точки зрения высшей. — М.: Наука, 1987. — Т. I. Арифметика. Алгебра. Анализ. — 432 с.
- Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
- Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
- Успенский Я. В. Очерк истории логарифмов. — Петроград: Научное книгоиздательство, 1923. — 78 с.
Ссылки
- Десятичные (бригсовы) логарифмы. (англ.)
Примечания
- ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 187.
- ↑ Выгодский М. Я. Справочник по элементарной математике, 1978, с. 189.
- ↑ Логарифмическая функция. // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3.
- ↑ Клейн Ф. Элементарная математика с точки зрения высшей, 1987, с. 406.
- ↑ История математики, том II, 1970, с. 62.
- ↑ Гнеденко Б. В. Очерки по истории математики в России, издание 2-е.. — М.: КомКнига, 2005. — С. 66.. — 296 с. — ISBN 5-484-00123-4
- ↑ Логарифмические таблицы //Большая советская энциклопедия.
Категория:- Логарифмы
Wikimedia Foundation. 2010.