Векторно-векторное произведение векторов

Векторно-векторное произведение векторов

Тройно́е ве́кторное произведе́ние (другое название: двойное векторное произведение)  \left[ \vec{a}, \vec{b}, \vec{c} \right] векторов \vec{a}, \vec{b}, \vec{c}векторное произведение вектора \vec{a} на векторное произведение векторов \vec{b} и \vec{c}:

\left[ \vec{a}, \vec{b}, \vec{c}\right] = \left[\vec{a}, \left[\vec{b}, \vec{c}\right]\right].

В литературе этот тип произведения трёх векторов называется как тройным[1] (по числу векторов), так и двойным[2] (по числу операций умножения).

Содержание

Свойства

Формула Лагранжа

Для тройного векторного произведения справедлива формула Лагранжа,

 \left[ \vec{a}, \vec{b}, \vec{c} \right] = \vec{b} \left( \vec{a} \cdot \vec{c} \right) - \vec{c} \left( \vec{a} \cdot \vec{b} \right),

которую можно запомнить по мнемоническому правилу «бац минус цаб».

Тождество Якоби

Для тройного векторного произведения выполняется тождество Якоби

 \left[ \vec{a}, \vec{b}, \vec{c} \right]+\left[ \vec{b}, \vec{c}, \vec{a} \right]+\left[ \vec{c}, \vec{a}, \vec{b} \right] = 0,

которое доказывается раскрытием скобок по формуле Лагранжа

0 = \vec{b} \left( \vec{a} \cdot \vec{c} \right) - \vec{c} \left( \vec{a} \cdot \vec{b} \right) +  \vec{c} \left( \vec{b} \cdot \vec{a} \right) - \vec{a} \left( \vec{b} \cdot \vec{c} \right) +  \vec{a} \left( \vec{c} \cdot \vec{b} \right) - \vec{b} \left( \vec{c} \cdot \vec{a} \right).

Примечания

  1. См., например, Weisstein, Eric W. Vector Triple Product на сайте Wolfram MathWorld.(англ.).
  2. См., например, М. Я. Выгодский, Справочник по высшей математике, М., 1977, стр. 156.

См. также


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "Векторно-векторное произведение векторов" в других словарях:

  • Векторное произведение векторов — Содержание 1 Правые и левые тройки векторов 2 Определение 3 Свойства …   Википедия

  • Векторное произведение — в трёхмерном пространстве. Векторное произведение  это псевдовектор, перпендикулярный плоскости, построенной по двум …   Википедия

  • Векторное умножение — Содержание 1 Правые и левые тройки векторов 2 Определение 3 Свойства …   Википедия

  • Оператор набла — (оператор Гамильтона)  векторный дифференциальный оператор, обозначаемый символом (набла) (в Юникоде U+2207, ∇). Для трёхмерного евклидова пространства в прямоугольных декартовых координатах[1] оператор набла определяется следующим образом …   Википедия

  • Момент силы — Размерность L2MT−2 Единицы измерения СИ Ньютон метр …   Википедия

  • Вращательный момент — Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент)  физическая величина, характеризующая вращательное действие силы на твёрдое тело. Момент силы приложенный к гаечному ключу Отношение между векторами силы, момента силы …   Википедия

  • Вращающий момент — Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент)  физическая величина, характеризующая вращательное действие силы на твёрдое тело. Момент силы приложенный к гаечному ключу Отношение между векторами силы, момента силы …   Википедия

  • Крутящий момент — Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент)  физическая величина, характеризующая вращательное действие силы на твёрдое тело. Момент силы приложенный к гаечному ключу Отношение между векторами силы, момента силы …   Википедия

  • Механический момент — Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент)  физическая величина, характеризующая вращательное действие силы на твёрдое тело. Момент силы приложенный к гаечному ключу Отношение между векторами силы, момента силы …   Википедия

  • Момент сил — Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент)  физическая величина, характеризующая вращательное действие силы на твёрдое тело. Момент силы приложенный к гаечному ключу Отношение между векторами силы, момента силы …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»