Массив Костаса

Массив Костаса

В математике, массив Костаса (названный в честь Джона П. Костаса) можно рассматривать геометрически как набор из n точек, лежащих в клетках шахматной доски размерности n×n, таким образом, чтобы каждая строка или столбец содержали только одну точку и все n(n − 1)/2 вектора смещений между каждой парой точек были различны. С помощью этого массива можно создать идеальную кнопкообразную функцию неопределённости (то есть, функция, которая бесконечна в точке (0,0) и принимает значение ноль в других точках), что делает применение массивов Костаса полезными для таких приложений как гидро- и радиолокация.

Массив Костаса может быть представлен в цифровом виде как массив из n×n чисел, где каждой точке ставится в соответствие 1, а в случае отсутствия точки в массив записывается 0. Если интерпретировать их как двоичные матрицы, эти массивы чисел имеют свойство: каждая строка и столбец имеет только одну точку на нем, поэтому они также являются матрицами перестановок. Таким образом, массивы Костаса для любого n являются подмножеством матриц перестановок порядка n.

Массивы Костаса можно рассматривать как двумерные аналоги одномерных линеек Голомба, они представляют математический интерес, применяются в разработках радиолокационной техники на фазированных решётках.

Все массивы Костаса вплоть до размера 27×27 известны [1]. Существует два способа получения массивов Костаса работающих с рядом простых чисел и степенью простых чисел. Они известны как методы Уэлча (Велча(Lloyd R. Welch)) и Лемпеля-Голомба и возникли в математике из теории конечных полей.

Пока неизвестны все массивы Костаса для всех размеров. В настоящее время самые маленькие размеры, для которых массивы неизвестны 32×32 и 33×33.

Содержание

Определение массивов

Массивы, как правило, описываются как ряд индексов, указывающих столбцы для каждой строки. С учетом того, что в любом столбце имеется только одна точка, массив можно представить как одномерный. Например, массив Костаса порядка N = 4:

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

Существуют точки с координатами: (1,2), (2,1), (3,3), (4,4)

x-координата увеличивается линейно, мы можем записать это кратко как последовательность y-координат. Тогда позиция в наборе будет x-координатой. Вышеописанный массив может быть закодирован последовательностью {2,1,3,4}. Это позволяет легко обращаться с массивами порядка N.

Известные массивы

N = 1
{1}

N = 2
{1,2} {2,1}

N = 3
{1,3,2} {2,1,3} {2,3,1} {3,1,2}

N = 4
{1,2,4,3} {1,3,4,2} {1,4,2,3} {2,1,3,4} {2,3,1,4} {2,4,3,1} {3,1,2,4} {3,2,4,1} {3,4,2,1} {4,1,3,2} {4,2,1,3} {4,3,1,2}

N = 5
{1,3,4,2,5} {1,4,2,3,5} {1,4,3,5,2} {1,4,5,3,2} {1,5,3,2,4} {1,5,4,2,3} {2,1,4,5,3} {2,1,5,3,4} {2,3,1,5,4} {2,3,5,1,4} {2,3,5,4,1} {2,4,1,5,3} {2,4,3,1,5} {2,5,1,3,4} {2,5,3,4,1} {2,5,4,1,3} {3,1,2,5,4} {3,1,4,5,2} {3,1,5,2,4} {3,2,4,5,1} {3,4,2,1,5} {3,5,1,4,2} {3,5,2,1,4} {3,5,4,1,2} {4,1,2,5,3} {4,1,3,2,5} {4,1,5,3,2} {4,2,3,5,1} {4,2,5,1,3} {4,3,1,2,5} {4,3,1,5,2} {4,3,5,1,2} {4,5,1,3,2} {4,5,2,1,3} {5,1,2,4,3} {5,1,3,4,2} {5,2,1,3,4} {5,2,3,1,4} {5,2,4,3,1} {5,3,2,4,1}

N = 6
{1,2,5,4,6,3} {1,2,6,4,3,5} {1,3,2,5,6,4} {1,3,2,6,4,5} {1,3,6,4,5,2} {1,4,3,5,6,2} {1,4,5,3,2,6} {1,4,6,5,2,3} {1,5,3,4,6,2} {1,5,3,6,2,4} {1,5,4,2,3,6} {1,5,4,6,2,3} {1,5,6,2,4,3} {1,5,6,3,2,4} {1,6,2,4,5,3} {1,6,3,2,4,5} {1,6,3,4,2,5} {1,6,3,5,4,2} {1,6,4,3,5,2} {2,3,1,5,4,6} {2,3,5,4,1,6} {2,3,6,1,5,4} {2,4,1,6,5,3} {2,4,3,1,5,6} {2,4,3,6,1,5} {2,4,5,1,6,3} {2,4,5,3,6,1} {2,5,1,6,3,4} {2,5,1,6,4,3} {2,5,3,4,1,6} {2,5,3,4,6,1} {2,5,4,6,3,1} {2,6,1,4,3,5} {2,6,4,3,5,1} {2,6,4,5,1,3} {2,6,5,3,4,1} {3,1,2,5,4,6} {3,1,5,4,6,2} {3,1,5,6,2,4} {3,1,6,2,5,4} {3,1,6,5,2,4} {3,2,5,1,6,4} {3,2,5,6,4,1} {3,2,6,1,4,5} {3,2,6,4,5,1} {3,4,1,6,2,5} {3,4,2,6,5,1} {3,4,6,1,5,2} {3,5,1,2,6,4} {3,5,1,4,2,6} {3,5,2,1,6,4} {3,5,4,1,2,6} {3,5,4,2,6,1} {3,5,6,1,4,2} {3,5,6,2,1,4} {3,6,1,5,4,2} {3,6,4,5,2,1} {3,6,5,1,2,4} {4,1,2,6,5,3} {4,1,3,2,5,6} {4,1,6,2,3,5} {4,2,1,5,6,3} {4,2,1,6,3,5} {4,2,3,5,1,6} {4,2,3,6,5,1} {4,2,5,6,1,3} {4,2,6,3,5,1} {4,2,6,5,1,3} {4,3,1,6,2,5} {4,3,5,1,2,6} {4,3,6,1,5,2} {4,5,1,3,2,6} {4,5,1,6,3,2} {4,5,2,1,3,6} {4,5,2,6,1,3} {4,6,1,2,5,3} {4,6,1,5,2,3} {4,6,2,1,5,3} {4,6,2,3,1,5} {4,6,5,2,3,1} {5,1,2,4,3,6} {5,1,3,2,6,4} {5,1,3,4,2,6} {5,1,6,3,4,2} {5,2,3,1,4,6} {5,2,4,3,1,6} {5,2,4,3,6,1} {5,2,6,1,3,4} {5,2,6,1,4,3} {5,3,2,4,1,6} {5,3,2,6,1,4} {5,3,4,1,6,2} {5,3,4,6,2,1} {5,3,6,1,2,4} {5,4,1,6,2,3} {5,4,2,3,6,1} {5,4,6,2,3,1} {6,1,3,4,2,5} {6,1,4,2,3,5} {6,1,4,3,5,2} {6,1,4,5,3,2} {6,1,5,3,2,4} {6,2,1,4,5,3} {6,2,1,5,3,4} {6,2,3,1,5,4} {6,2,3,5,4,1} {6,2,4,1,5,3} {6,2,4,3,1,5} {6,3,1,2,5,4} {6,3,2,4,5,1} {6,3,4,2,1,5} {6,4,1,3,2,5} {6,4,5,1,3,2} {6,4,5,2,1,3} {6,5,1,3,4,2} {6,5,2,3,1,4}

Полная база данных массивов для всех размерностей, которые были тщательно проверены доступна здесь [2]

Построение

Уэлч (Велч)

Массив Уэлча-Костаса, или просто массив Уэлча (Велча), является массивом Костаса полученным с использованием метода разработанного Ллойдом Р. Уэлчем (Lloyd R. Welch). Массив Уэлча-Костаса строится путем взятия первообразного корня g простого числа p и определением массива A где A_{i,j} = 1 если i \equiv g^j \bmod p, в противном случае 0. Результатом является массив Костаса размера p − 1.


Пример:

3 является первообразным корнем по модулю 5.

3^1 = 3
3^2 = 9 = 4 (mod 5)
3^3 = 27 = 2 (mod 5)
3^4 = 81 = 1 (mod 5)

Поэтому [3 4 2 1] является перестановкой Костаса. Это дискретно экспоненциальный массив Уэлча (Велча). Транспонированный массив является дискретно логарифмическим массивом Уэлча.

Число массивов Уэлча-Костаса, которые существуют для данного размера, зависит от функции Эйлера.

Лемпель-Голомб

Метод Лемпеля-Голомба использует примитивные элементы α и β из конечного поля GF(q) и аналогично определяется A_{i,j} = 1 если \alpha^i + \beta^j = 1, иначе 0. Результатом является массив Костаса размера q − 2. Если α + β = 1, то первая строка и столбец удаляются для формирования другого массива Костаса размера q − 3: неизвестно, есть ли такие пары примитивных элементов для каждой степени q.

См. также

Ссылки

Литература

  • Costas, J. P. A study of a class of detection waveforms having nearly ideal range-Doppler ambiguity properties. Proceedings of the IEEE, 72, 8 (1984), 996—1009.
  • Golomb, S. W., and Taylor, H. Construction and properties of Costas arrays. Proceedings of the IEEE, 72, 9 (1984), 1143—1163.
  • Beard, J., Russo, J., Erickson, K., Monteleone, M., and Wright, M. Combinatoric Collaboration on Costas Arrays and Radar Applications. In IEEE Radar Conference, Philadelphia, Pennsylvania, (2004), 260–265.
  • Richard K. Guy, Unsolved Problems in Number Theory (3rd ed), Springer Verlag, 2004 ISBN 0-387-20860-7; sections C18,F9.
  • Oscar Moreno, "Survey of results on signal patterns for locating one or multiple targets", in Alexander Pott, P. Vijay Kumar, Tor Helleseth, Dieter Jungnickel (edd) Difference Sets, Sequences and Their Correlation Properties, Kluwer, ISBN 0792359585.

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "Массив Костаса" в других словарях:

  • Линейка Голомба — 4 порядка длиной 6. Эта линейка оптимальна и совершенна. В математике линейкой Голомба называется набор неотрицательных целых чисел, расположенных в виде делений на воображаемой линейке таким образом, что расстояние между любыми двумя делениями… …   Википедия

  • Диэдрическая группа — Снежинка имеет группу симметрии D6, так же, как и правильный шестиугольник В математике, диэдральной группой (Dn, группа диэдра) называется группа симметрии правильного n угольника, включающая вращения и отражения. Группы диэдра относятся к числу …   Википедия

  • Кардица — Город Кардица Καρδίτσα Страна ГрецияГреция …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»