Фазированная антенная решётка

Фазированная антенная решётка
Огромная наземная ФАР системы предупреждения о ракетном нападении на Аляске, США
Система управления вооружением современного истребителя

Фазированная антенная решётка — тип антенн, в виде группы антенных излучателей, в которых относительные фазы сигналов изменяются комплексно, так, что эффективное излучение антенны усиливается в каком-то одном, желаемом направлении и подавляется во всех остальных направлениях.

Содержание

Введение

Управление фазами (фазирование) позволяет радару с применяемой ФАР:

  • формировать (при весьма разнообразных расположениях излучателей) необходимую диаграмму направленности (ДН) антенны (например, остронаправленную ДН типа луч);
  • изменять направление луча неподвижной антенны, таким образом осуществляя быстрое (в ряде случаев практически безынерционное) сканирование — качание луча;
  • управлять в определённых пределах формой ДН — изменять ширину луча, интенсивность (уровни) боковых лепестков и т.п. (для этого в ФАР иногда осуществляют также управление и амплитудами волн отдельных излучателей).
Установка защитного колпака на ФАР

Эти (и некоторые другие свойства ФАР), а также возможность применять для управления ФАР современные средства автоматики и вычислительной электроники обусловили их перспективность и широкое использование в радиосвязи, радиолокации, радионавигации, радиоастрономии и т. д. ФАР, содержащие большое число управляемых элементов, входят в состав различных наземных (стационарных и подвижных), корабельных, авиационных и космических радиоустройств. Ведутся интенсивные разработки в направлении дальнейшего развития теории и техники ФАР и расширения области их применения.

Описание устройства ФАР

КНД

Применение антенных решёток обусловлено следующими причинами. Решётка из N элементов позволяет увеличить приблизительно в N раз КНД (и соответственно усиление) антенны по сравнению с одиночным излучателем, а также сузить луч для повышения точности определения угловых координат источника излучения в навигации и радиолокации. С помощью решётки удаётся поднять электрическую прочность антенны и увеличить уровень излучаемой (принимаемой) мощности путём размещения в каналах решётки независимых усилителей высокочастотной энергии.

Электрическое сканирование

Одним из важных преимуществ решётки является возможность быстрого (безынерционного) обзора пространства за счёт качания луча антенны электрическими методами (электрического сканирования).

Помехозащищённость

Помехозащищённость системы зависит от уровня боковых лепестков антенны и возможности подстройки (адаптации) его по помеховой обстановке. Антенная решётка — необходимое звено для создания такого динамического пространственно-временного фильтра, или просто для уменьшения УБЛ. Одной из важнейших задач современной бортовой радиоэлектроники является создание комплексированной системы, совмещающей несколько функций, например радионавигации, РЛС, связи и т. д. Возникает необходимость создания антенной решётки с электрическим сканированием с несколькими лучами (многолучевой, моноимпульсной и т. д.), работающей на различных частотах (совмещённой) и имеющей различные характеристики.

Конструктивно-технологические преимущества

Имеется ряд конструктивно-технологических преимуществ по сравнению с другими классами антенн. Так например, улучшение массогабаритных характеристик бортовой аппаратуры происходит за счёт использования печатных антенных решёток. Снижение стоимости больших радиоастрономических телескопов достигается благодаря применению зеркальных антенных решёток.

Классификация

Классификация антенных решёток; а) линейная; б) дуговая; в) кольцевая; г) плоская; д) цилиндрическая; е) коническая; ж) сферическая; з) неэквидистантная

Антенные решётки могут быть классифицированы по следующим основным признакам:

  • геометрия расположения излучателей в пространстве
    • линейные
    • дуговые
    • кольцевые
    • плоские
      • с прямоугольной сеткой размещения
      • с косоугольной сеткой размещения
    • выпуклые
      • цилиндрические
      • конические
      • сферические
    • пространственные
  • способ возбуждения
    • с последовательным питанием
    • с параллельным питанием
    • с комбинированным (последовательно-параллельным)
    • с пространственным (оптическим, «эфирным») способом возбуждения
  • закономерность размещения излучающих элементов в самой решётке
    • эквидистантное размещение
    • неэквидистантное размещение
  • способ обработки сигнала
  • амплитудо-фазовое распределение токов (поля) по решётке
  • тип излучателей

Обработка сигнала

В питающем антенную решётку тракте (фидере) возможна различная пространственно-временная обработка сигнала. Изменение фазового распределения в решётке с помощью системы фазовращателей в питающем тракте позволяет управлять максимумом диаграммы направленности. Такие решётки называют фазированными антенными решётками (ФАР). Если к каждому излучателю ФАР, или к группе подключается усилитель мощности, генератор, или преобразователь частоты, то такие решётки называются активными фазированными антенными решётками (АФАР).

Адаптивные АР

Приёмные антенные решётки с саморегулируемым амплитудно-фазовым распределением в зависимости от помеховой обстановки называют адаптивными. Приёмные антенные решётки с обработкой сигнала методами когерентной оптики называются радиооптическими. Приёмные антенные решётки, в которых обработка ведётся цифровыми процессорами, называются цифровыми антенными решётками.

Совмещённые антенные решётки

Совмещённые антенные решётки имеют в своём раскрыве два, или более типа излучателей, каждый из которых работает в своём частотном диапазоне.

Многолучевые антенные решётки

Антенные решётки, формирующие с одного излучающего раскрыва несколько независимых (ортогональных) лучей и имеющие соответствующее число входов, называются многолучевыми.

По виду амплитудного распределения

В зависимости от соотношения амплитуд токов возбуждения различают решётки с:

  • равномерным
  • экспоненциальным
  • симметрично спадающим относительно центра

амплитудным распределением. Если фазы токов излучателей изменяются вдоль линии их размещения по линейному закону, то такие решётки называют решётками с линейным фазовым распределением. Частным случаем таких решёток являются синфазные решётки, у которых фазы тока всех элементов одинаковы.

Структура ФАР

Формы, размеры и конструкции современных ФАР весьма разнообразны; их разнообразие определяется как типом используемых излучателей, так и характером их расположения. Сектор сканирования ФАР определяется ДН её излучателей. В ФАР с быстрым широкоугольным качанием луча обычно используются слабонаправленные излучатели: симметричные и несимметричные вибраторы, часто с одним или несколькими рефлекторами (например, в виде общего для всей ФАР зеркала); открытые концы радиоволноводов, щелевые, рупорные, спиральные, диэлектрические стержневые, логопериодические и др. антенны. Иногда большие по размерам ФАР составляют из отдельных малых ФАР (модулей); ДН последних ориентируется в направлении основного луча всей ФАР. В ряде случаев, например когда допустимо медленное отклонение луча, в качестве излучателей используют остронаправленные антенны с механическим поворотом (например, т. н. полноповоротные зеркальные); в таких ФАР отклонение луча на большой угол выполняют посредством поворота всех антенн и фазирования излучаемых ими волн; фазирование этих антенн позволяет также осуществлять в пределах их ДН быстрое качание луча ФАР.

В зависимости от требуемой формы ДН и необходимого пространственного сектора сканирования в ФАР применяют различное взаимное расположение элементов:

  • вдоль линии (прямой или дуги);
  • по поверхности (например, плоской – в т. н. плоских ФАР; цилиндрической; сферической)
  • в заданном объёме (объёмные ФАР).

Иногда форма излучающей поверхности ФАР – раскрыва, определяется конфигурацией объекта, на котором устанавливается ФАР. ФАР с формой раскрыва, подобной форме объекта, иногда называются конформными. Широко распространены плоские ФАР; в них луч может сканировать от направления нормали к раскрыву (как в синфазной антенне) до направления вдоль раскрыва (как в антенне бегущей волны). Коэффициент направленного действия (КНД) плоской ФАР при отклонении луча от нормали к раскрыву уменьшается. Для обеспечения широкоугольного сканирования (в больших пространственных углах – вплоть до 4 стерадиан без заметного снижения КНД используют ФАР с неплоским (например, сферическим) раскрывом или системы плоских ФАР, ориентированных в различных направлениях. Сканирование в этих системах осуществляется посредством возбуждения соответственно ориентированных излучателей и их фазирования.

По характеру распределения излучателей в раскрыве различают эквидистантные и неэквидистантные ФАР. В эквидистантных ФАР расстояния между соседними элементами одинаковы по всему раскрыву. В плоских эквидистантных ФАР излучатели чаще всего располагают в узлах прямоугольной решётки (прямоугольное расположение) или в узлах треугольной сетки (гексагональное расположение). Расстояния между излучателями в эквидистантных ФАР обычно выбирают достаточно малыми (часто меньше рабочей длины волны), что позволяет формировать в секторе сканирования ДН с одним главным лепестком (без побочных дифракционных максимумов – т. н. паразитных лучей) и низким уровнем боковых лепестков; однако для формирования узкого луча (т. е. в ФАР с большим раскрывом) необходимо использовать большое число элементов. В неэквидистантных ФАР элементы располагают на неодинаковых расстояниях друг от друга (расстояние может быть, например, случайной величиной). В таких ФАР даже при больших расстояниях между соседними излучателями можно избежать образования паразитных лучей и получать ДН с одним главным лепестком. Это позволяет в случае больших раскрывов сформировать очень узкий луч при сравнительно небольшом числе элементов; однако такие неэквидистантные ФАР с большим раскрывом при малом числе излучателей имеют более высокий уровень боковых лепестков и, соответственно, более низкий КНД, чем ФАР с большим числом элементов. В неэквидистантных ФАР с малыми расстояниями между излучателями при равных мощностях волн, излучаемых отдельными элементами, можно получать (в результате неравномерного распределения плотности излучения в раскрыве антенны) ДН с более низким уровнем боковых лепестков, чем в эквидистантных ФАР с таким же раскрывом и таким же числом элементов.

Управление фазовыми сдвигами

По способу изменения фазовых сдвигов различают ФАР:

  • с электромеханическим сканированием, осуществляемым, например, посредством изменения геометрической формы возбуждающего радиоволновода;
  • частотным сканированием, основанным на использовании зависимости фазовых сдвигов от частоты, например за счёт длины фидера между соседними излучателями или дисперсии волн в радиоволноводе;
  • с электрическим сканированием, реализуемым при помощи фазосдвигающих цепей или фазовращателей, управляемых электрическими сигналами с плавным (непрерывным) или ступенчатым (дискретным) изменением фазовых сдвигов.

Наибольшими возможностями обладают ФАР с электрическим сканированием. Они обеспечивают создание разнообразных фазовых сдвигов по всему раскрыву и значительную скорость изменения этих сдвигов при сравнительно небольших потерях мощности. На СВЧ в современных ФАР широко используют ферритовые и полупроводниковые фазовращатели (с быстродействием порядка микросекунд и потерями мощности ~ 20%). Управление работой фазовращателей осуществляется при помощи быстродействующей электронной системы, которая в простейших случаях управляет группами элементов (например, строками и столбцами в плоских ФАР с прямоугольным расположением излучателей), а в наиболее сложных – каждым фазовращателем в отдельности. Качание луча в пространстве может производиться как по заранее заданному закону, так и по программе, вырабатываемой в ходе работы всего радиоустройства, в которое входит ФАР.

Особенности построения ФАР

Возбуждение излучателей ФАР производится либо при помощи фидерных линий, либо посредством свободно распространяющихся волн (в т. н. квазиоптических ФАР), фидерные тракты возбуждения наряду с фазовращателями иногда содержат сложные электрические устройства (т. н. диаграммообразующие схемы), обеспечивающие возбуждение всех излучателей от нескольких входов, что позволяет создать в пространстве соответствующие этим входам одновременно сканирующие лучи (в многолучевых ФАР). Квазиоптические ФАР в основном бывают двух типов: проходные (линзовые), в которых фазовращатели и основные излучатели возбуждаются (при помощи вспомогательных излучателей) волнами, распространяющимися от общего облучателя, и отражательные – основной и вспомогательные излучатели совмещены, а на выходах фазовращателей установлены отражатели. Многолучевые квазиоптические ФАР содержат несколько облучателей, каждому из которых соответствует свой луч в пространстве. Иногда в ФАР для формирования ДН применяют фокусирующие устройства (зеркала, линзы). Рассмотренные выше ФАР иногда называются пассивными.

Наибольшими возможностями управления характеристиками обладают активные ФАР, в которых к каждому излучателю или модулю подключен управляемый по фазе (иногда и по амплитуде) передатчик или приёмник. Управление фазой в активных ФАР может производиться в трактах промежуточной частоты либо в цепях возбуждения когерентных передатчиков, гетеродинов приёмников и т.п. Таким образом, в активных ФАР фазовращатели могут работать в диапазонах волн, отличных от частотного диапазона антенны; потери в фазовращателях в ряде случаев непосредственно не влияют на уровень основного сигнала. Передающие активные ФАР позволяют осуществить сложение в пространстве мощностей когерентных электромагнитных волн, генерируемых отдельными передатчиками. В приёмных активных ФАР совместная обработка сигналов, принятых отдельными элементами, позволяет получать более полную информацию об источниках излучения.

В результате непосредственного взаимодействия излучателей между собой характеристики ФАР (согласование излучателей с возбуждающими фидерами, КНД и др.) при качании луча изменяются. Для борьбы с вредными последствиями взаимного влияния излучателей в ФАР иногда применяют специальные методы компенсации взаимной связи между элементами.

Перспективы развития ФАР

К наиболее важным направлениям дальнейшего развития теории и техники ФАР относятся:

  • Широкое внедрение в радиотехнические устройства ФАР с большим числом элементов, разработка элементов новых типов, в частности для активных ФАР;
  • Развитие методов построения ФАР с большими размерами раскрывов, в том числе неэквидистантных ФАР с остронаправленными антеннами, расположенными в пределах целого полушария Земли (глобальный радиотелескоп);
  • Дальнейшая разработка методов и технических средств ослабления вредных влияний взаимной связи между элементами ФАР;
  • Развитие теории синтеза и методов машинного проектирования ФАР;
  • Разработка теории и внедрение в практику новых методов обработки информации, принятой элементами ФАР, и использования этой информации для управления ФАР, в частности для автоматического фазирования элементов (самофазирующиеся ФАР) и изменения формы ДН, например понижения уровня боковых лепестков в направлениях на источники помех (адаптивные ФАР);
  • Разработка методов управления независимым движением отдельных лучей в многолучевых ФАР.

История создания

До конца 1980-х годов создание такой системы требовало применения большого количества устройств, из-за чего фазированные решётки, полностью управляемые электроникой, использовались, главным образом, в больших стационарных радарах, типа массивного BMEWS (Ballistic Missile Warning Radar) и несколько меньшего американского морского радара противовоздушной обороны SCANFAR, (развитие AN/SPG-59), установленного на американском тяжелом атомном ракетном крейсере «Лонг-Бич»(англ.) и атомном авианосце «Энтерпрайз». Его потомок SPY-1 Aegis установливался на крейсерах класса Ticonderoga и позже на эсминцах Arleigh Burke. Единственными известными применениями на самолётах был большой радар Заслон (англ.), установленный на советском перехватчике МиГ-31, и радар нападения на Rockwell B-1B Lancer. В текущий момент применяется в Су-35 и F-22.

Такие радары не устанавливались на самолётах главным образом из-за их большого веса, поскольку первое поколение технологии фазированных решёток использовало обычную радарную архитектуру. В то время как антенна изменилась, всё остальное ещё оставалось прежним, но были добавлены дополнительные вычислители, чтобы управлять фазовращателями антенны. Это привело к увеличению веса антенны, количества вычислительных модулей, а также повысило нагрузку на систему электропитания.

Выгоды применения фазированных решёток, однако, оправдывали дополнительную стоимость. Фазированные решетки могли в единственной антенне совместить работу нескольких антенн, почти одновременно. Широкие лучи могли использоваться для поиска цели, узкие — для сопровождения, плоские лучи в форме веера для определения высоты, узкие направленные лучи для полёта по ландшафту (B-1B). Во враждебной зоне электронного противодействия выгоды были ещё больше, поскольку фазированные решётки позволяют системе размещать «ноль» диаграммы направленности антенны в направлении источника помех и таким образом блокировать её попадание в приёмник. Другая выгода — отсутствие необходимости механически поворачивать антенну в направлении цели, что позволило повысить скорости обзора пространства на порядки, а также увеличить срок службы системы, так как с введением фазирования частично отпала потребность в громоздких механизмах ориентации полотна в пространстве. Обычно многосторонняя антенна могла обеспечить охват в 360 градусов, неподвижными антеннами, охватывающими все направления сразу.

Эта технология также предоставляла менее очевидные выгоды. Одна могла быстро «осмотреть» маленький участок неба, чтобы увеличить вероятность обнаружения маленькой и скоростной цели, в отличие от медленно вращающейся антенны, которая может сканировать специфический сектор только однажды за оборот (обычно период обзора составляет от 5 до 20 секунд). Цель с малым ЭПР, например, низко летящую крылатую ракету, почти невозможно заметить при таких условиях. Способность фазированной решётки к почти мгновенному изменению направления и формы луча фактически добавляют целое новое измерение к сопровождению целей, поскольку разные цели могут быть отслежены разными лучами, каждый из которых переплетается во времени с периодически сканирующим лучом обзора пространства. Например, луч обзора пространства может охватывать 360 градусов периодически, тогда как сопровождающие лучи могут следить за индивидуальными целями независимо от того, куда в это время направлен луч обзора пространства.

Фазированные решётки, как и все физические объекты, имеют и ограничения. Основное ограничение — диапазон углов, на которые луч может быть отклонён. Практически, предел составляет 45...60 градусов от перпендикуляра к плоскости антенны. Отклонение луча на большие углы значительно ухудшает основные характеристики антенной системы (УБЛ, КНД, ширину и форму основного лепестка диаграммы направленности). Это объясняется двумя эффектами. Первый из них — уменьшение эффективной длины (ширины) антенны (апертура антенны) с ростом угла отклонения луча. В свою очередь, сокращение длины решётки в сочетании со снижением коэффициента усиления антенны уменьшает способность обнаружения цели на расстоянии.

Второй эффект вызван видом диаграммы направленности (ДН) выбранных элементов антенной решётки. Отклонять луч ФАР целесообразно в пределах основного лепестка ДН элементов антенной решётки (этот луч шире основного луча ДН ФАР). Выход за пределы или приближение к краям основного лепестка ДН элементов антенной решетки приводит, в первом случае, к участию боковых лепестков ДН в формировании ДН ФАР, во втором случае, к уменьшению мощности излучения. В результате, при предельных значениях углов луч существенно ослаблен и расфокусирован.

См. также

Ссылки

Литература

  • Воскресенский Д. И., Гостюхин В. Л., Максимов В. М., Пономарёв Л. И. Антенны и устройства СВЧ / Под ред. Д. И. Воскресенского. Учебник. — 2-е изд. — Москва: МАИ, 1993. — 528 с.



Wikimedia Foundation. 2010.

Смотреть что такое "Фазированная антенная решётка" в других словарях:

  • Фазированная антенная решётка — (ФАР), фазированная решётка, направленная антенна с управляемыми фазами или разностями фаз (фазовыми сдвигами) волн, излучаемых (или принятых) её элементами (излучателями). Управление фазами (фазирование) позволяет формировать необходимую… …   Энциклопедия техники

  • Фазированная антенная решётка — (ФАР)         фазированная решётка, Антенная решётка с управляемыми Фазами или разностями фаз (фазовыми сдвигами) волн, излучаемых (или принятых) её элементами (излучателями). Управление фазами (фазирование) позволяет: формировать (при весьма… …   Большая советская энциклопедия

  • фазированная антенная решётка — fazuotoji gardelinė antena statusas T sritis radioelektronika atitikmenys: angl. phased antenna array vok. phasierte Antennenanordnung, f rus. фазированная антенная решётка, f pranc. réseau d antennes phasées, m …   Radioelektronikos terminų žodynas

  • ФАЗИРОВАННАЯ АНТЕННАЯ РЕШЁТКА — (фазированная решётка), антенная решётка с управляемыми фазами или разностями фаз (фазовыми сдвигами) волн, излучаемых (или принятых) её элементами. Фазирование позволяет, напр., формировать необходимую диаграмму направленности, управлять её… …   Естествознание. Энциклопедический словарь

  • фазированная антенная решётка — (фазированная решётка), антенная решётка с управляемыми фазами или разностями фаз (фазовыми сдвигами) волн, излучаемых (или принятых) её элементами. Фазирование позволяет, например, формировать необходимую диаграмму направленности, управлять её… …   Энциклопедический словарь

  • фазированная антенная решётка — (ФАР), фазированная решётка, — направленная антенна с управляемыми фазами или разностями фаз (фазовыми сдвигами) волн, излучаемых (или принятых) её элементами (излучателями). Управление фазами (фазирование) позволяет формировать необходимую… …   Энциклопедия «Авиация»

  • фазированная антенная решётка — (ФАР), фазированная решётка, — направленная антенна с управляемыми фазами или разностями фаз (фазовыми сдвигами) волн, излучаемых (или принятых) её элементами (излучателями). Управление фазами (фазирование) позволяет формировать необходимую… …   Энциклопедия «Авиация»

  • Активная фазированная антенная решётка — (АФАР) разновидность фазированой антенной решётки (ФАР). РЛС Н050 с АФАР для ПАК ФА представленная НИИП на МАКС 2009 …   Википедия

  • Антенная решётка — У этого термина существуют и другие значения, см. Решётка. Антенная решётка (АР) сложная направленная антенна, состоящая из совокупности отдельных слабонаправленных антенн (излучающих элементов), расположенных в пространстве особым образом.… …   Википедия

  • Фазированная антенная решетка — Огромная наземная ФАР системы предупреждения о ракетном нападении на Аляске, США Система управления вооружением современного истребителя Фазированная антенная решётка в волновой теории группа антенных излучателей, в которых относительная… …   Википедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.