Озонатор

Озонатор
Самодельный «озонатор», изготовленный из лампы ДРЛ. Чрезвычайно опасен для зрения и кожи.

Озонатор — устройство для получения озона (O3). Озон является аллотропной модификацией кислорода, содержащей в молекуле три атома кислорода. В большинстве случаев исходным веществом для синтеза озона выступает молекулярный кислород (O2), а сам процесс описывается уравнением 3O2 → 2O3. Эта реакция является эндотермичной и легко обратимой. Поэтому, на практике применяется комплекс мер, способствующих максимальному смещению её равновесия в сторону целевого продукта.

Содержание

Способы получения озона

Существует множество способов получения озона

В электрическом разряде

Тихий разряд

Синтез из газообразного кислорода под воздействием тихого электрического разряда. С этой целью в зазор между электродами, подключёнными к источнику высокого напряжения, пропускается воздух или чистый кислород. Напряжение, подающееся на электроды, обычно составляет от нескольких тысяч до нескольких десятков тысяч вольт. Лучшая производительность достигается при использовании чистого кислорода, максимально низкой температуры газа и применении пульсирующего постоянного тока. Зазор между электродами и эффективная площадь электродов определяются рабочим напряжением и скоростью подачи кислородсодержащего газа. Металлические электроды могут каталитически разлагать соприкасающийся с ними озон, поэтому их часто помещают внутрь тонкой стеклянной оболочки. Иногда в качестве своеобразных электродов выступают трубки, заполненные проводящей жидкостью, например, серной кислотой. Электродные пары для повышения производительности аппарата часто собирают в большие пакеты, охлаждаемые проточной водой. Концентрация озона на выходе из таких реакторов (в зависимости от их конструкции и содержания кислорода в исходной газовой смеси) обычно не превышает нескольких процентов, а при использовании атмосферного воздуха составляет лишь доли процента. Кроме того, озонсодержащая газовая смесь, получаемая в тихом разряде из атмосферного воздуха, содержит значительное количество оксидов азота, обладающих высокой реакционной способностью, что является неприемлемым для многих технологических процессов. Поэтому, применение в качестве исходного сырья для синтеза озона чистого кислорода (который может быть легко рекуперирован) часто бывает рентабельнее, чем применение атмосферного воздуха.

Барьерный разряд

Барьерный разряд — разряд, возникающий между двумя диэлектриками или диэлектриком и металлом в цепи переменного тока, является эффективным и экономичным генератором озона.[1][2]К барьерному разряду можно отнести несколько типов разрядных ячеек:

Объемный барьерный разряд
Поверхностный разряд
Разряд в ячейках копланарной геометрии
Устройство плазменной панели

Этот тип барьерного разряда занимает промежуточное положение между объёмным и поверхностным разрядами и широко используется в качестве генераторов ультрафиолетового излучения для возбуждения люминофоров в плазменных разрядных панелях (плазменных телевизорах). В таких разрядных ячейках электроды расположены вдоль поверхности на равных расстояниях и сверху закрыты слоем диэлектрика, напряжение прикладывается к каждой паре электродов, и между всеми соседствующими электродами возникает разряд.

Подобные разрядные ячейки очень заманчиво применить для синтеза в них озона, особенно учитывая хорошо отработанную технологию создания разрядных панелей, однако, копланарная газоразрядная панель создавалась для работы в инертных средах, поэтому работа ячейки с заполнением ее кислородом или атмосферным воздухом может осуществляться только при пониженном давлении. Попытка получить устойчивый разряд при атмосферном давлении приводит к пробою диэлектрического покрытия. В экспериментальной установке, на описанной выше разрядной ячейке, были получены концентрации озона до 25 мг/л, при давлениях от 0,2 до 0,5 бар.[3]

Практическое применение ячеек копланарной геометрии в качестве озонаторов вызывает сомнение, несмотря на достаточно высокий выход озона. Эти ячейки очень дороги, недостаточно прочны и способны работать только при пониженном давлении.

Дуговой разряд

При получение озона возможно использовать так же и дуговой разряд. Термическая диссоциация молекул резко возрастает с ростом температуры. Так, при Т=3000К — содержание атомарного кислорода составляет ~10 %. Такие температуры (несколько тысяч градусов) можно получить в дуговом разряде атмосферного давления. Однако, образование O3 неосуществимо при высоких температурах, поскольку озон разлагается быстрее молекулярного кислорода, но можно создать неравновесные условия: нагреть газ в высокотемпературной камере, а затем резко его охладить. Это дает возможность сверхравновесного образования озона. Озон получается как промежуточный продукт при переходе смеси O2+O к молекулярному кислороду. Максимальная концентрация O3 в таком варианте плазмотрона достигает 1 %, она вполне достаточна для многих промышленных целей, и, к тому же, сравнима по величине с получаемой в озонаторах использующих тихий разряд (чаще всего барьерный). К явным недостаткам данного метода относится нестабильное горение разряда, перегрев, избыточное давление, большое потребление электроэнергии, большие габариты установок на его основе.[4][5]

Коронный разряд

Схема ячейки озонатора с коронным разрядом

Коронный разряд образуется, когда электрическое поле вокруг проводника сильно неоднородно, в воздухе происходит ионизация, сопровождаемая свечением, проводник при этом, окружен как бы короной. Свечение короны не достигает противоположного электрода, затухая в окружающем газе. В зависимости от коронирующего электрода различают отрицательную и положительную корону, а в зависимости от способа питания — корону постоянного и переменного тока, импульсную и т. п. Количество озона, образующееся в коронном разряде, колеблется от 15 до 25 г О3/кВтч. Преимуществом озонаторов на основе коронного разряда является в первую очередь простота конструкции и неограниченность «разрядного промежутка». Газ можно прокачивать без дополнительного сопротивления, например, по широкой трубе с проволокой вдоль оси. Озонаторы на основе коронного разряда применяют чаще всего в вентиляционных сооружениях. Энергетический выход озона в коронном разряде может доходить до 200—250 г О3/кВтч при применении электропитания с короткими импульсами, с крутым фронтом нарастания напряжения. [6] Однако, создание таких сложных генераторов электропитания, каких требует наносекундный импульсный разряд, является слишком дорогостоящим усложнением системы получения озона.

Под воздействием ультрафиолетового излучения

Синтез под воздействием ультрафиолетового излучения более прост в реализации, но значительно менее производителен. Он состоит в том, что кислородсодержащий газ пропускается через охлаждаемый и прозрачный для ультрафиолетового излучения (например, кварцевый) реактор, облучаемый источником ультрафиолетового излучения, имеющим подходящий спектр. В качестве газа, как правило, используется чистый кислород. В качестве источника для самодельных приборов удобны лишенные баллона ртутные лампы высокого давления (типа ДРЛ). Выход озона при использовании УФ-установок невысок, поэтому в промышленно выпускаемых приборах этот метод, как правило, не реализуется.

Электролизом

Озон может быть получен при электролизе. В качестве электролита может использоваться, например, крепкий раствор хлорной кислоты. Процесс стараются вести при возможно более низкой температуре, что существенно увеличивает производительность аппарата по озону. Методом электролиза удается получать кислородно-озоновую смесь с очень высоким (десятки процентов) содержанием озона. Недостатком электролитических методов является дороговизна электролитов и электродов, которые обычно изготавливаются из благородных металлов.

При прохождении химической реакции

Озон может в значительных количествах образовываться при окислении некоторых веществ. Наиболее известным примером такого рода реакций является окисление пинена (основного компонента скипидара) кислородом воздуха, в результате которого образуется заметное количество озона. Выделяющийся при этой реакции озон может быть использован для окисления других веществ — как непосредственно в смеси со скипидаром, так и после его сепарации. Однако, этот метод имеет крайне ограниченное применение по причине дороговизны сырья и проблем с разделением продуктов реакции.

Под воздействием энергетических пучков

Неоднократно предпринимались попытки создания озонаторов на основе облучения кислорода энергетическими пучками. В таких устройствах озон образуется при воздействии на кислород различных потоков частиц: электронов, рентгеновских лучей и радиационных потоков: α-частиц, γ-квантов и т. д. Озон при этом образуется, начиная с энергии монохроматического пучка электронов ~6 эВ, что соответствует диссоциации молекулы О2. Это подтверждает принятый в настоящее время механизм образования озона. Общими недостатками этих методов являются сложность аппаратуры, низкий энергетический выход, нежелательность работы с высокоэнергетическими пучками, широкий спектр веществ, образующихся при воздействии на воздух частиц высоких энергий. Озонаторы построенные по данному принципу не вышли за пределы лабораторий и применения в промышленности не нашли.[7][8]


Отличия от ионизатора

Озонаторы для промышленного, бытового и медицинского применения

Озонаторы не следует путать с ионизаторами (такими, как люстра Чижевского). Это разные приборы. Ионизаторы сообщают дополнительный отрицательный электрический заряд молекулам воздуха и при правильной настройке генерировать озон не должны. Озон является очень сильным окислителем и чрезвычайно ядовит даже в низких концентрациях. Он находит ограниченное применение в промышленном синтезе (например, при получении янтарной кислоты из изделий и отходов каучукового производства), в терапии (т. н. озонотерапия). Иногда он применяется для очистки и обеззараживания питьевой воды (например, на речных судах) и некоторых промышленных стоков, содержащих легкоокисляемую органику, когда использование более традиционных окислителей по тем или иным причинам не желательно. Однако в таком качестве он значительно менее эффективен и гораздо более дорог, чем они. Применение озонаторов для стерилизации медицинского инструмента, как правило, неэффективно.

Примечания

  1. Ю.В. Филиппов, В.А. Вобликова, В.И. Пантелеев, Электросинтез озона // МГУ им. М. В. Ломоносова. — Москва: Издательство МГУ, 1987.
  2. В.Г. Самойлович, В.И. Гибалов, К.В. Козлов Физическая химия барьерного разряда. — Москва: Издательство МГУ, 1989. — ISBN 5-211-00415-9.
  3. В.И Гибалов, А. Т. Рахимов, А. Б. Савельев, В. Б. Саенко// Особенности электросинтеза озона в поверхностном барьерном разряде. Препринт НИИЯФ МГУ — № 99 — 18/576. 1999. 28 с.
  4. Скадченко О. Е., Вендилло В. П., Филипов Ю. В.//Вестн. Моск. Ун-та. Сер. Химия. 1972. Т. 13, № 5. С. 594.
  5. Скадченко О. Е. Исследование образования озона в струе низкотемпературной плазмы: Автореф. дисс… канд. хим. наук. М., 1972.
  6. Понизовский А. З. Понизовский Л. З. Шведчиков А. П.// Проблемы использования импульсного коронного разряда в экологии. Мин-во науки и технической политики РФ, координационный межведомственный совет по проблеме «Озонаторостроение и применение озона в народном хоз-ве», Информационный центр «Озон». Информационные материалы. Вып. 3. М., 1994. С. 29.
  7. Белоусова Э. В., Понизовский А. З., Гончаров В. А. и др.// Химия выс. энергий. 1991. Т. 25, № 5. С. 556.
  8. Белоусова Э. В., Понизовский А. З., Гончаров В. А. и др.// Химия выс. энергий. 1992. Т. 26, № 4. С. 317.

См. также



Wikimedia Foundation. 2010.

Нужно сделать НИР?

Полезное


Смотреть что такое "Озонатор" в других словарях:

  • ОЗОНАТОР — (ново лат.). Прибор для добывания озона. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. озонатор прибор для озонирования (см. озонировать). Новый словарь иностранных слов. by EdwART, , 2009 …   Словарь иностранных слов русского языка

  • озонатор — а, м. ozonateur. Прибор для озонирования, очистки воздуха. Озонаторы очищают воздух. БАС 1. Озонатор, озонирование, озонировать. Опис. ремесл. выст. 1899 22. Осмотрели кислородные резервуары, озонаторы, опреснители, все люки. А. Толстой Под водой …   Исторический словарь галлицизмов русского языка

  • ОЗОНАТОР — аппарат для обеззараживания воды и обогащения воздуха озоном …   Большой Энциклопедический словарь

  • ОЗОНАТОР — ОЗОНАТОР, озонатора, муж. (спец.). Прибор для озонирования воздуха. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • ОЗОНАТОР — ОЗОНАТОР, а, муж. (спец.). Аппарат для получения озона, а также для обеззараживания воды и обогащения воздуха озоном. | прил. озонаторный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • озонатор — Аппарат для обеззараживания воды и обогащения воздуха озоном [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] EN ozonizer DE OzonanlageOzonisierungsanlage FR ozonateur …   Справочник технического переводчика

  • ОЗОНАТОР — (1) устройство для получения (см.) в промышленном количестве путём воздействия «тихого» (не искрового) электрического разряда на воздух; (2) аппарат для очистки воздуха или обеззараживания воды озоном …   Большая политехническая энциклопедия

  • озонатор — 3.2 озонатор: Аппарат, включающий в себя генератор озона и соединенный с ним источник электропитания. Источник: ГОСТ Р 51706 2001: Оборудование озонаторное. Требования безопасности оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • озонатор — а; м. Прибор для озонирования воздуха. ◁ Озонаторный, ая, ое. * * * озонатор аппарат для обеззараживания воды и обогащения воздуха озоном. * * * ОЗОНАТОР ОЗОНАТОР, аппарат для обеззараживания воды и обогащения воздуха озоном …   Энциклопедический словарь

  • ОЗОНАТОР — аппарат для обеззараживания воды и обогащения воздуха озоном (Болгарский язык; Български) озонатор (Чешский язык; Čeština) ozonator (Немецкий язык; Deutsch) Ozonisierungsanlage; Ozonanlage (Венгерский язык; Magyar) ózonfejlesztő (Монгольский… …   Строительный словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»