Правила Худзита

Правила Худзита

Правила Худзита

Правила Худзита — набор из семи правил формально описывающие геометрические построения с помощью плоского оригами, подобным построениям с помощью циркуля и линейки.

Фактически они описывают все возможные способы получения одной новой складки на листе бумаги, путем совмещения уже существующих различных элементов листа — точек и линий. Под линиями подразумеваются края листа или складки бумаги, под точками — пересечения линий. Существенным моментом является то, что сгиб формируется единственной складкой, причем в результате складывания фигура остается плоской.

Часто эти правила называют «аксиомами», хотя с формальной точки зрения аксиомами они не являются.

Содержание

Правила

Складки в этих правилах существуют не всегда, правило утверждает только, что если такая складка есть, то её «можно» найти.

Правило 1

Huzita axiom 1.png

Пусть заданы две точки p1 и p2, тогда лист можно сложить так, что данные две точки будут лежать на складке.

Правило 2

Huzita axiom 2.png

Пусть заданы две точки p1 и p2, тогда лист можно сложить так, что одна точка перейдёт в другую.

Правило 3

Huzita axiom 3.png

Пусть заданы две прямые l1 и l2, тогда лист можно сложить так, что одна прямая перейдёт в другую.

Правило 4

Huzita axiom 4.png

Пусть заданы прямая l1 и точка p1, тогда лист можно сложить так, что точка попадёт на складку, а прямая перейдёт сама в себя (т.е. линия складки будет ей перпендикулярна).

Правило 5

Huzita axiom 5.png

Пусть заданы прямая l1 и две точки p1 и p2, тогда лист можно сложить так, что точка p2 попадёт на складку, а p1 на прямую l1.

Правило 6

Huzita axiom 6.png

Пусть заданы две прямые l1 и l2 и две точки p1 и p2, тогда лист можно сложить так, что точка p1 попадёт на прямую l1, а точка p2 попадёт на прямую l2.

Правило 7

Huzita-Hatori axiom 7.png

Пусть заданы две прямые l1 и l2 и точка p, тогда лист можно сложить так, что точка p попадёт на прямую l1, а прямая l2 прейдёт сама в себя (т.е. линия складки будет ей перпендикулярна).

Замечания

Все складки в этом списке можно получить как результат последовательного применения правила номер 6. То есть для математика они ничего не добавляют, однако позволяют уменьшить количество сгибов. Система из семи правил является полной, то есть они описывают все возможные способы получения одной новой складки на листе бумаги, путем совмещения уже существующих различных элементов листа. Это последнее утверждение было доказано Лэнгом[1].

Возможные и невозможные построения

Все построения являются ничем иным, как решениями какого-либо уравнения, причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому удобно говорить о построении числа — графического решения уравнения определенного типа. В рамках вышеописанных требований, возможны следующие построения:

Иначе говоря, возможно построить лишь числа равные арифметическим выражениям с использованием квадратного и кубического корней из исходных чисел (длин отрезков).

В частности, при помощи таких построений можно осуществить удвоение куба, трисекцию угла, построение правильного семиугольника. Решение задачи о квадратуре круга однако остаётся невозможным, так как πтрансцендентное число.

История

Основное правило (немер 6) было рассмотрено М. П. Белох[2], ей же принадлежат первые построения трисекции угла и квадратуры круга с помощью оригами-построений . Полный список правил появляется в работе Жака Жустина[3], который позднее также ссылался на Питера Мессера как на соавтора. Практически одновременно правила 1—6 были сформулированы Хамяки Худзита[4]. Последнее седьмое правило добавил ещё позже Косиро Хатори[5].

Вариации и обобщения

Список возможных построений можно значительно расширить, если позволить создание нескольких складок за один раз. Хотя человек, решивший провести несколько складок за одно действие на практике столкнется с трудностями физического порядка, тем не менее возможно вывести правила, аналогичные правилам Худзита и для этого случая[6]. При допущении таких дополнительных правил, возможно доказать следующую теорему:

Любое алгебраическое уравнение степени n может быть решено n-2 одновременными складками

Представляет интерес, возможно ли решить то же уравнение складыванием, вовлекающим меньшее количество одновременных складок. Это, несомненно, верно для n=4 и неизвестно для n=5[6].

См. также

Математика оригами

Литература

По-английски

  1. R. Lang Origami and Geometric Constructions
  2. M. P. Beloch, Sul metodo del ripiegamento della carta per la risoluzione dei problemi geometrici, Periodico di Mathematiche, Ser. 4, Vol. 16, 1936, 104—108.
  3. Justin, Jacques, Resolution par le pliage de l'equation du troisieme degre et applications geometriques, reprinted in Proceedings of the First International Meeting of Origami Science and Technology, H. Huzita ed. (1989), 251—261.
  4. Humiaki Huzita, ”Axiomatic Development of Origami Geometry,” Proceedings of the First International Meeting of Origami Science and Technology, Humiaki Huzita, ed., 1989, pp 143–158.
  5. Koshiro Hatori, Origami Construction
  6. 1 2 Roger C. Alperin and Robert J. Lang, "One-, Two-, and Multi-Fold Origami Axioms.

Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "Правила Худзита" в других словарях:

  • Правила Хидзита — Правила Худзита набор из семи правил формально описывающие геометрические построения с помощью плоского оригами, подобным построениям с помощью циркуля и линейки. Фактически они описывают все возможные способы получения одной новой складки на… …   Википедия

  • Правила Худзиты — Правила Худзиты  набор из семи правил формально описывающие геометрические построения с помощью плоского оригами, подобным построениям с помощью циркуля и линейки. Фактически они описывают все возможные способы получения одной новой складки… …   Википедия

  • Плоское оригами — Правила Худзита набор из семи правил формально описывающие геометрические построения с помощью плоского оригами, подобным построениям с помощью циркуля и линейки. Фактически они описывают все возможные способы получения одной новой складки на… …   Википедия

  • Построение с помощью циркуля и линейки — Построения с помощью циркуля и линейки  раздел евклидовой геометрии, известный с античных времён. В задачах на построение циркуль и линейка считаются идеальными инструментами, в частности: Линейка не имеет делений и имеет сторону бесконечной …   Википедия

  • Построение циркулем и линейкой — Построения с помощью циркуля и линейки раздел евклидовой геометрии, известный с античных времён. В задачах на построение возможны следующие операции: Отметить произвольную точку на плоскости, точку на одной из построенных линий или точку… …   Википедия

  • Построения при помощи циркуля и линейки — Построения с помощью циркуля и линейки раздел евклидовой геометрии, известный с античных времён. В задачах на построение возможны следующие операции: Отметить произвольную точку на плоскости, точку на одной из построенных линий или точку… …   Википедия

  • Построения с помощью циркуля и линейки — раздел евклидовой геометрии, известный с античных времён. В задачах на построение возможны следующие операции: Отметить произвольную точку на плоскости, точку на одной из построенных линий или точку пересечения двух построенных линий. С помощью… …   Википедия

  • Фудзита — (яп. 藤田?)  японская фамилия. Известные носители: Фудзита, Кадзуюки  японский прореслер и боец смешанного стиля. Фудзита, Масахиса  японский экономист, один из авторов концепции «пространственной экономики». Фудзита, Фумиаки… …   Википедия

  • Фудзита, Фумиаки — Фумиаки Фудзита 藤田 文章 Дата рождения: 1924 год(1924) Дата смерти: 26 марта 2005 …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»