Битовый сдвиг

Битовый сдвиг

Би́товый сдвиг — изменение позиций битов в слове на одну и ту же величину.

Большинство компьютеров не могут напрямую адресовать биты, которые содержатся группами по 8, 16, 32 или 64 битов в словах. Для обеспечения работы с битами существует множество машинных инструкций, включающие различные типы сдвигов. Все сдвиги похожи друг на друга поведением средних битов, которые просто сдвигаются влево или вправо на определённую величину. Однако, поведение крайних битов, которые уходят из слова и которые появляются в слове, зависит от типа сдвига.

В электронике битовые сдвиги осуществляются в регистрах сдвига.

Содержание

Логический сдвиг

Логический сдвиг влево
Логический сдвиг вправо

Сдвиг, при котором уходящий бит уходит, не влияя на оставшееся биты, а на место появившегося бита записывается бит 0.

Пример работы операции сдвига:

Пусть у нас есть число 10101010b (в двоичной системе).
Если сделать сдвиг влево на 1 бит, то получим число 01010100b
Если сделать сдвиг исходного числа вправо на 1 бит, то получим число 01010101b

В большинстве процессоров уходящий бит сохраняется во флаге переноса. Эта функция широко используется при работе со многобайтовыми числами.

Арифметический сдвиг

Арифметический сдвиг влево
Арифметический сдвиг вправо

При этом сдвиге слово рассматривается не просто как группа битов, а как целое число в дополнительном коде. При сдвиге влево ведёт себя как логический сдвиг, при сдвиге вправо: уходящий бит уходит, не влияя на оставшиеся биты, а на место появившегося бита устанавливается бит, соответствующий знаку.

Пример работы операции сдвига:

Пусть у нас есть число 11111010b = −6 (в двоичной системе).
Если сделать сдвиг влево на 1 бит, то получим число 11110100b = −12
Если сделать сдвиг исходного числа вправо на 1 бит, то получим число 11111101b = −3

Легко заметить, что при арифметическом сдвиге сдвиг влево соответствует умножению на 2, а сдвиг вправо — делению на 2 (в общем случае — на основание системы счисления) с округлением к −∞. Например:

 1011 = −5          1111 = −1
>>a 1              >>a 1
 ----               ----
 1101 = −3          1111 = −1

Схемотехническая реализация операций сдвига очень проста. Именно поэтому эти операции рекомендуют использовать для операций умножения и деления целых чисел на числа, равные степени 2 (2, 4, 8, 16, 32, 64 и т. д.) — если, конечно, такое округление отрицательных чисел не мешает.

Циклический сдвиг

Циклический сдвиг влево
Циклический сдвиг вправо

При этом сдвиге уходящий бит появляется на месте появившегося.

Пример работы операции сдвига:

Пусть у нас есть число 11111010b (в двоичной системе).
Если сделать сдвиг влево на 1 бит, то получим число 11110101b
Если сделать сдвиг вправо на 1 бит, то получим число 01111101b


Циклический сдвиг через бит переноса

Циклический сдвиг влево через бит переноса
Циклический сдвиг вправо через бит переноса

В архитектуру многих процессоров входит флаг переноса в следующий разряд (например, cf на x86). Данная операция выполняет циклический сдвиг над (n+1)-битным числом, состоящим из регистра и флага переноса.

Например, если у нас в регистре число 11111010b, флаг переноса равен 0:

После сдвига влево на 1 бит: в регистре 11110101b, флаг переноса равен 1
После сдвига вправо на 1 бит: в регистре 01111101b, флаг переноса равен 0

Операция циклического сдвига через бит переноса используется при работе с многобайтовыми числами. В частности, чтобы сдвинуть вправо на 1 бит длинное число, нужно очистить[1] cf (в случае деления числа со знаком нужно записать в cf старший бит старшего слова) и циклически сдвинуть на единицу через cf каждое слово, начиная с верхнего. Например, пусть у нас есть число 011000111100b, занимающее три 4-битных слова:

Было:              HI=0110, MED=0011, LO=1100, cf=0
После сдвига HI:   HI=0011, MED=0011, LO=1100, cf=0
После сдвига MED:  HI=0011, MED=0001, LO=1100, cf=1
После сдвига LO:   HI=0011, MED=0001, LO=1110, cf=0

Сдвиги через регистр флагов более чем на 1 бит практически не используются.

См. также

Примечания

  1. Можно вместо очистки флага для первого обрабатываемого слова использовать арифметический\логический сдвиг, если он присваивает флагу cf значение вышедшего бита.

Ссылки



Wikimedia Foundation. 2010.

Смотреть что такое "Битовый сдвиг" в других словарях:

  • Сдвиг — Сдвиг: В Викисловаре есть статья «сдвиг» Сдвиг (механика)  механическая деформация, вызванная касательными напряжениями …   Википедия

  • Сдвиг (значения) — Сдвиг  многозначный термин: Сдвиг в механике  деформация, вызванная касательными напряжениями. Битовый сдвиг в информатике Лэмбовский сдвиг в атомной физике Великий сдвиг гласных в лингвистике Фазовый сдвиг в теории колебаний. См. также Сдвиг… …   Википедия

  • Битовые операции — Не следует путать с булевой функцией. Битовая операция в программировании  некоторые операции над цепочками битов. В программировании, как правило, рассматриваются лишь некоторые виды этих операций: логические побитовые операции и… …   Википедия

  • Serpent — Создатель: Росс Андерсон, Эли Бихам …   Википедия

  • XTEA — Создатель: Дэвид Уилер и Роджер Нидхэм Создан: 1997 г …   Википедия

  • Целое (тип данных) — Целое, целочисленный тип данных (англ. Integer), в информатике  один из простейших и самых распространённых типов данных в языках программирования. Служит для представления целых чисел. Множество чисел этого типа представляет собой… …   Википедия

  • Битовая операция — Битовые операции, иногда также булевы или логические операции[1] операции над битами, применяемые в программировании и цифровой технике, изучаемые в дискретной математике и математической логике. Содержание 1 Введение 1.1 …   Википедия

  • Булевы операции — Битовые операции, иногда также булевы или логические операции[1] операции над битами, применяемые в программировании и цифровой технике, изучаемые в дискретной математике и математической логике. Содержание 1 Введение 1.1 …   Википедия

  • Инвертор (логический элемент) — Битовые операции, иногда также булевы или логические операции[1] операции над битами, применяемые в программировании и цифровой технике, изучаемые в дискретной математике и математической логике. Содержание 1 Введение 1.1 …   Википедия

  • Сеть Фейстеля — (конструкция Фейстеля)  один из методов построения блочных шифров. Сеть представляет собой определённую многократно повторяющуюся (итерированную) структуру, называющуюся ячейкой Фейстеля. При переходе от одной ячейки к другой меняется ключ,… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»