Радио

Радио

Ра́дио (лат. radio — излучаю, испускаю лучи ← radius — луч) — разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Содержание

Принцип работы

Передача происходит следующим образом: на передающей стороне формируется сигнал с требуемыми характеристиками (частота и амплитуда сигнала). Далее передаваемый сигнал модулирует более высокочастотное колебание (несущее). Полученный модулированный сигнал излучается антенной в пространство. На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей — несущей). Таким образом, происходит извлечение полезного сигнала. Получаемый сигнал может несколько отличаться от передаваемого передатчиком (искажения вследствие помех и наводок).

Частотные диапазоны

Согласно решению МСЭ принято различать следующие диапазоны частот:[1]

  • Очень низкие частоты (мириаметровые волны) — f = 3—30 кГц (λ = 10-100 км)
  • Низкие частоты (километровые волны) — f = 30—300 кГц (λ = 1-10 км)
  • Средние частоты (гектометровые волны) — f = 0,3—3 МГц (λ = 0,1-1 км)
  • Высокие частоты (декаметровые волны) — f = 3—30 МГц (λ = 10-100 м)
  • Очень высокие частоты (метровые волны) — f = 30—300 МГц (λ = 1-10 м)
  • Ультравысокие частоты (дециметровые волны) — f = 0,3—3 ГГц (λ = 10-100 см)
  • Сверхвысокие частоты (сантиметровые волны) — f = 3—30 ГГц (λ = 1-10 см)
  • Крайне высокие частоты (миллиметровые волны) — f = 30—300 ГГц (λ = 0,1-1 см)

В практике радиовещания и телевидения используется упрощённая классификация радиодиапазонов:

  • Сверхдлинные волны (СДВ) — мириаметровые волны
  • Длинные волны (ДВ) — километровые волны
  • Средние волны (СВ) — гектометровые волны
  • Короткие волны (КВ) — декаметровые волны
  • Ультракороткие волны (УКВ) — высокочастотные волны, длина волны которых меньше 10 м.

В зависимости от диапазона радиоволны имеют свои особенности и законы распространения:

  • ДВ сильно поглощаются ионосферой, основное значение имеют приземные волны, которые распространяются, огибая землю. Их интенсивность по мере удаления от передатчика уменьшается сравнительно быстро.
  • СВ сильно поглощаются ионосферой днём, и район действия определяется приземной волной, вечером хорошо отражаются от ионосферы и район действия определяется отражённой волной.
  • КВ распространяются исключительно посредством отражения ионосферой, поэтому вокруг передатчика существует т. н. зона радиомолчания. Днём лучше распространяются более короткие волны (30 МГц), ночью — более длинные (3 МГц). Короткие волны могут распространяться на больши́е расстояния при малой мощности передатчика.
  • УКВ распространяются прямолинейно и, как правило, не отражаются ионосферой, однако при определённых условиях способны огибать земной шар из-за разности плотностей воздуха в разных слоях атмосферы. Легко огибают препятствия и имеют высокую проникающую способность.
  • ВЧ не огибают препятствия, распространяются в пределах прямой видимости. Используются в WiFi, сотовой связи и т. д.
  • КВЧ не огибают препятствия, отражаются большинством препятствий, распространяются в пределах прямой видимости. Используются для спутниковой связи.
  • Гипервысокие частоты не огибают препятствия, отражаются подобно свету, распространяются в пределах прямой видимости. Использование ограничено.

Распространение радиоволн

Радиоволны распространяются в пустоте и в атмосфере; земная твердь и вода для них непрозрачны. Однако, благодаря эффектам дифракции и отражения, возможна связь между точками земной поверхности, не имеющими прямой видимости (в частности, находящимися на большом расстоянии).

Распространение радиоволн от источника к приёмнику может происходить несколькими путями одновременно. Такое распространение называется многолучёвостью. Вследствие многолучёвости и изменений параметров среды, возникают замирания (англ. fading) — изменение уровня принимаемого сигнала во времени. При многолучёвости изменение уровня сигнала происходит вследствие интерференции, то есть в точке приёма электромагнитное поле представляет собой сумму смещённых во времени радиоволн диапазона.

Особые эффекты

  • эффект антиподов — радиосигнал может хорошо приниматься в точке земной поверхности, приблизительно противоположной передатчику. Описанные примеры:
  • эхо от волны, обошедшей Землю (фиксированная задержка)
  • редко наблюдаемый и малоизученный эффект LDE (Мировое эхо, эхо с большой задержкой).
  • эффект Доплера изменение частоты (длины волны) в зависимости от скорости приближения (или удаления) передатчика сигнала относительно приёмника. При их сближении частота увеличивается, при взаимном удалении уменьшается.
  • Люксембург-Горьковский эффект, связанный с изменениями несущей частоты вследствие нелинейных эффектов при распространении радиоволн в ионосфере[2]

Виды радиосвязи

Радиосвязь можно разделить на радиосвязь без применения ретрансляторов по длинам волн:

  • СДВ-связь
  • ДВ-связь
  • СВ-связь
  • КВ-связь
    • КВ-связь земной (поверхностной) волной
    • КВ-связь ионосферной (пространственной) волной
  • УКВ-связь
    • УКВ связь прямой видимости
    • тропосферная связь
    • с отражением от Луны или метеоритов

С применением ретрансляторов:

Широковещательные передачи

Гражданская радиосвязь

Решениями ГКРЧ России (Государственной комиссии по радиочастотам) для гражданской связи физическими и юридическими лицами на территории Российской Федерации выделены 3 группы частот:
  • 27 МГц (Си-Би, «Citizen’s Band», гражданский диапазон), с разрешённой выходной мощностью передатчика до 10 Вт. Автомобильные рации диапазона 27 МГц широко используются для организации радиосвязи в службах такси, для связи водителей-дальнобойщиков;
  • 433 МГц (LPD, «Low Power Device»), выделено 69 каналов для раций с выходной мощностью передатчика не более 0,01 Вт;
  • 446 МГц (PMR, «Personal Mobile Radio»), выделено 8 каналов для раций с выходной мощностью передатчика не более 0,5 Вт.

Радио используется в компьютерных сетях AMPRNet, в которых соединение обеспечивается любительскими радиостанциями.

Радиолюбительская связь

Радиолюбительская связь — многогранное техническое хобби, выражающееся в проведении радиосвязей в отведённых для этой цели диапазонах радиочастот. Данное хобби может иметь направленность в сторону той или иной составляющей, например:

  • конструирование и постройка любительской приёмно-передающей аппаратуры и антенн;
  • участие в различных соревнованиях по радиосвязи (радиоспорт);
  • коллекционирование карточек-квитанций, высылаемых в подтверждение проведённых радиосвязей и/или дипломов, выдаваемых за проведение тех или иных связей;
  • поиск и проведение радиосвязей с радиолюбительскими станциями, работающими из отдалённых мест или из мест, с которых крайне редко работают любительские радиостанции (DXing);
  • работа какими-то определёнными видами излучения (телеграфия, телефония с однополосной или частотной модуляцией, цифровые виды связи);
  • связь на УКВ с использованием отражения радиоволн от Луны (EME), от зон полярного сияния («Аврора»), от метеорных потоков, с ретрансляцией через радиолюбительские ИСЗ;
  • работа малой мощностью передатчика (QRP), на простейшей аппаратуре;
  • участие в радиоэкспедициях — выход в эфир из отдалённых и труднодоступных мест и территорий планеты, где нет активных радиолюбителей.

История и изобретение радио

Никола Тесла на лекции демонстрирует принципы радиосвязи, 1891 г.

Создателем первой успешной системы обмена информацией с помощью радиоволн (радиотелеграфии) считается итальянский инженер Гульельмо Маркони (1895)[3][4]. Однако работы Маркони были встречены без энтузиазма. В России изобретателем радиотелеграфии традиционно считают А. С. Попова[4], однако ни то, ни другое не совсем верно. Маркони , по сути соединил передатчик Генриха Герца и приёмник А. С. Попова, в одно устройство. В первых опытах по радиосвязи, проведённых в физическом кабинете, а затем в саду Минного офицерского класса, приёмник обнаруживал излучение радиосигналов, посылаемых передатчиком, на расстоянии до 60 м. В США изобретателем радио считается Никола Тесла, запатентовавший в 1893 году радиопередатчик, а в 1895 г. приёмник; его приоритет перед Маркони был признан в судебном порядке в 1943 году[5]. Это связано с тем, что конструкция устройств Теслы позволяла модулировать акустическим сигналом колебательный контур передатчика, осуществлять радио передачу сигнала на расстояние и принимать его приёмником, который преобразовывал сигнал в акустический звук. Такую же конструкцию имеют все современные радио устройства, в основе которых лежит колебательный контур. В то время как конструкция Маркони и Попова были примитивны и позволяли осуществлять только сигнальную функцию, используя в том числе азбуку Морзе. Во Франции изобретателем беспроволочной телеграфии долгое время считался создатель когерера (трубки Бранли) (1890) Эдуар Бранли.[6][7]. В Индии радиопередачу в миллиметровом диапазоне в ноябре 1894 года демонстрирует сэр Джагадиш Чандра Боше[источник не указан 934 дня]. В Англии, в 1894 году первым демонстрирует радиопередачу и радиоприём на расстояние 40 метров изобретатель когерера (трубка Бранли со встряхивателем) Оливер Джозеф Лодж. Первым же изобретателем способов передачи и приёма электромагнитных волн (которые длительное время назывались «Волнами Герца — Hertzian Waves»), является сам их первооткрыватель, немецкий учёный Генрих Герц (1888). Основные этапы истории изобретения радио выглядят следующим образом.

  • 1866 — Махлон Лумис (Mahlon Loomis), американский дантист, заявил о том, что открыл способ беспроволочной связи. Связь осуществлялась при помощи двух электрических проводов, поднятых двумя воздушными змеями, один из них с размыкателем был антенной радиопередатчика, второй — антенной радиоприёмника, при размыкании от земли цепи одного провода отклонялась стрелка гальванометра в цепи другого провода.
  • 1868 — Лумис заявил, что повторил свои эксперименты перед представителями Конгресса США, послав сигналы на расстояние 22,5 км.
  • 1872 — Лумис получил первый в мире патент на беспроводную связь. Хотя президент Грант подписал закон о финансировании опытов Лумиса, финансирование так и не было открыто[8] К сожалению, никаких достоверных данных о характере экспериментов Лумиса, равно как и чертежей его аппаратов не сохранилось. Американский патент также не содержит детального описания устройств, использованных Лумисом.
  • 1879 — Дэвид Хьюз при работе с индукционной катушкой обнаружил эффект электромагнитных волн; однако позднее коллеги убедили его, что речь идёт лишь об индукции.[9][10]
  • 1888 — немецкий физик Г. Герц доказал существование электромагнитных волн. Герц с помощью устройства, которое он назвал вибратором, осуществил успешные опыты по передаче и приёму электромагнитных сигналов на расстояние и без проводов.
  • 1890 — французский физик и инженер Эдуар Бранли изобрёл прибор для регистрации электромагнитных волн, названный им радиокондуктор (позднее — когерер). В своих опытах Бранли использует антенны в виде отрезков проволоки. Результаты опытов Эдуара Бранли были опубликованы в Бюллетене Международного общества электриков и отчётах Французской Академии Наук.
  • 1891 — Никола Тесла (Сент-Луис, штат Миссури, США) в ходе лекций публично описал принципы передачи радиосигнала на большие расстояния.
  • 1893 — Тесла патентует радиопередатчик и изобретает мачтовую антенну, с помощью которой в 1895 г. передаёт радиосигналы на расстояние 30 миль[11]
  • Между 1893 и 1894 — Роберто Ланделл де Мора, бразильский священник и учёный, провёл эксперименты по передаче радиосигнала. Их результаты он не оглашал до 1900 г., но впоследствии получил бразильский патент.
  • 1894 — Маркони, по своим воспоминаниям, под влиянием идей проф. Риги, высказанных в некрологе памяти Герца, начинает эксперименты по радиотелеграфии (первоначально — с помощью вибратора Герца и когерера Бранли)[12]. Однако никаких письменных свидетельств того времени, которые могли бы подтвердить опыты Маркони проводимые в 1894 году, не имеется.
  • 14 августа 1894 — первая публичная демонстрация опытов по беспроводной телеграфии Оливером Лоджем и Александром Мирхедом на лекции в театре Музея естественной истории Оксфордского университета. В ходе демонстрации радио сигнал был отправлен из лаборатории в соседнем Кларендоновском корпусе и принят аппаратом в театре (40 м.) Изобретённый Лоджем радиоприёмник («Прибор для регистрации приёма электромагнитных волн») содержал радиокондуктор — «трубку Бранли» со встряхивателем, которому Лодж дал название когерер, источник тока, реле и гальванометр; для встряхивания когерера с целью периодического восстановления его чувствительности к «волнам Герца» использовался или электрический звонок или заводной пружинный механизм с молоточком-зацепом.
  • ноябрь 1894 — публичная демонстрация опытов по беспроводной передаче сигнала в миллиметровом диапазоне сэром Джагадишем Чандра Боше в Ратуше города Калькутты. Кроме того, Боше изобрёл ртутный когерер, не требующий при работе физического встряхивания.
  • 7 мая 1895 года на заседании Русского физико-химического общества в Санкт-Петербурге Александр Степанович Попов читает лекцию «Об отношении металлических порошков к электрическим колебаниям», на которой, воспроизводя опыты Лоджа c электромагнитными сигналами, продемонстрировал прибор, схожий в общих чертах с тем, который ранее использовался Лоджем. При этом Попов внёс в конструкцию усовершенствования. В радиоприёмнике Попова молоточек, встряхивавший когерер (трубку Бранли), работал не от часового механизма, а от радиоимпульса[13]. Современники Попова признавали, что его конструкция представляла собой прибор, который впоследствии был использован для беспроводной телеграфии. Сам Попов приспособил прибор для улавливания атмосферных электромагнитных волн, под названием «грозоотметчик»; первым в мае же 1895 года на метеостанции Лесного института установил «грозоотметчик» (или «разрядоотметчик» — такие названия прибору первым дал именно он) основатель физической кафедры учреждения Д. А. Лачинов, который в июле 1895 года во 2-м издании своего курса «Основ метеорологии и климатологии» впервые изложил принцип действия «разрядоотметчика Попова» — это и есть первое описание прототипа.[14][15][16][17][18]
  • Весна 1895 г. — Маркони добивается передачи радиосигнала на 1,5 км.
  • Сентябрь 1895 — по некоторым утверждениям, Попов присоединил к приёмнику телеграфный аппарат и получил телеграфную запись принимаемых радиосигналов.[11]. Однако никаких документальных свидетельств об опытах Попова с радиотелеграфией до декабря 1897 г. (то есть до опубликования патента и сообщений об успешных опытах Маркони) не существует[13]. Версию о передаче Поповым радиограммы раньше Маркони измыслил В. С. Габель[19]
  • 2 июня 1896 г. — Маркони подаёт заявку на патент.
  • 2 сентября 1896 — Маркони демонстрирует своё изобретение на равнине Солсбери, передав радиограммы на расстояние 3 км[12][20][21].
  • 1897 — Оливер Лодж изобрёл принцип настройки на резонансную частоту[22]
  • 1897 — Французский предприниматель Эжен Дюкрете строит экспериментальный приёмник беспроволочной телеграфии по чертежам, предоставленным А. С. Поповым.
  • 24 апреля 1897 — Попов на заседании Русского физико-химического общества, используя вибратор Герца и приёмник собственной конструкции, передаёт на расстояние 250 м первую в России радиограмму: «Генрих Герц».
  • 2 июля 1897 — Маркони получает британский патент № 12039, «Усовершенствования в передаче электрических импульсов и сигналов в передающем аппарате». В общих чертах приёмник Маркони воспроизводил приёмник Попова, (с некоторыми усовершенствованиями)[13], а его передатчик — вибратор Герца с усовершенствованиями Риги. Принципиально новым было то, что приёмник был изначально подключён к телеграфному аппарату, а передатчик соединён с ключом Морзе, что и сделало возможным радиотелеграфическую связь. Маркони использовал антенны одной длины для приёмника и передатчика, что позволило резко повысить мощность передатчика; кроме того детектор Маркони был гораздо чувствительнее детектора Попова, что признавал и сам Попов.[23]
  • 6 июля 1897 — Маркони на итальянской военно-морской базе [[Специя]] передаёт фразу Viva l’Italia из-за линии горизонта — на расстояние 18 км.[24]
  • Ноябрь 1897 — строительство Маркони первой постоянной радиостанции на о. Уайт, соединённой с Бормотом (23 км.)[25]
  • Январь 1898 — Первое практическое применение радио: Маркони передаёт (за обрывом телеграфных проводов из-за снежной бури) сообщения журналистов из Уэльса о смертельной болезни Уильяма Гладстона[12][26]
  • Май 1898 — Маркони впервые применяет систему настройки.
  • 1898 — Маркони открывает первый в Великобритании «завод беспроволочного телеграфа» в Челмсфорде, Англия, на котором работают 50 человек.
  • Конец 1898 — Эжен Дюкретэ (Париж) приступает к мелкосерийному выпуску приёмников системы Попова[18]. Согласно мемуарам Дюкретэ, чертежи устройств он получил от А. С. Попова благодаря интенсивной переписке.
  • 1898 — присуждение А. С. Попову премии Русского Технического Общества в 1898 г. «за изобретение приёмника электромагнитных колебаний и приборов для телеграфирования без проводов»[19]
  • 3 марта 1899 — Радиосвязь впервые в мире была успешно использована в морской спасательной операции: с помощью радиотелеграфа спасены команда и пассажиры потерпевшего кораблекрушение парохода «Масенс» (Mathens)[22][25].
  • Май 1899 — Помощники Попова П. Н. Рыбкин и Д. С. Троицкий обнаружили детекторный эффект когерера. На основании этого эффекта, Попов модернизировал свой приёмник для приёма сигналов на головные телефоны оператора и запатентовал как «телефонный приёмник депеш».
  • 1899 — сэр Джагдиш Чандра Боз (Калькутта) изобрёл ртутный когерер.
  • 1900 — Радиосвязь вновь, впервые в России, была успешно использована в морской спасательной операции. По инструкциям Попова была построена радиостанция на острове Гогланд, возле которого находился севший на мель броненосец береговой обороны «Генерал-адмирал Апраксин». Радиотелеграфные сообщения на радиостанцию острова Гогланд приходили с находящейся в 25 милях передающей станции Российской Военно-Морской базы в Котке, которая телеграфной линией была связана с Адмиралтейством Санкт-Петербурга. Приборы, использовавшиеся в спасательной операции, были изготовлены в мастерских Эжена Дюкретэ. В результате обмена радиограммами ледоколом «Ермак» были также спасены финские рыбаки с оторванной льдины в Финском Заливе.[27][28]
  • 1900 — Маркони получает патент № 7777 на систему настройки радио («Oscillating Sintonic Circuit»).
  • 1900 — Работы Попова отмечены Большой золотой медалью и Дипломом на международной электротехнической выставке в Париже.[11]
  • 12 декабря 1901 Маркони провёл первый сеанс трансатлантической радиосвязи между Англией и Ньюфаундлендом на расстояние 3200 км (передал букву S Азбуки Морзе). До того это считалось принципиально невозможным
  • 1905 — Маркони получает патент на направленную передачу сигналов.
  • 1906 — Реджинальд Фессенден и Ли де Форест обнаруживают возможность амплитудной модуляции радиосигнала низкочастотным сигналом, что позволило передавать в эфире человеческую речь.
  • 1909 — Присуждение Маркони и Ф.Брауну Нобелевской премии по физике «в знак признания их заслуг в развитии беспроволочной телеграфии»[29]

Изобретение радиосвязи дало начало таким наукам как радиоастрономия, радиометрология, радионавигация, радиоразведка, радиопротиводействие[30].

См. также

Примечания

  1. Баскаков С. И. Электродинамика и распространение радиоволн. Учебное пособие для ВУЗов по спец. «Радиотехника». М.: Высшая школа. 1992. — 416
  2. Горелик Г. С.(1959). Колебания и волны.
  3. Guglielmo Marconi//Encyclopaediz Britannica
  4. 1 2 Aleksandr Popov//Encyclopaediz Britannica
  5. Обзор фильма «Властелин мира: Никола Тесла».
  6. TSF : Livres anciens, rares, d’occasion sur Galaxidion  (фр.)
  7. Rendons à César ce qui appartient César  (фр.)
  8. http://www.computer-museum.ru/connect/loomis.htm
  9. http://www.ufn.ru/ufn92/ufn92_4/Russian/r924d.pdf
  10. http://www.computer-museum.ru/connect/hughes.htm
  11. 1 2 3 Ко дню Радио :: CQHAM.RU
  12. 1 2 3 газета «КОММЕНТАРИИ». Знать и понимать
  13. 1 2 3 «Кто „изобрёл“ радио?» Лев Николаевич Никольский (лауреат Государственной премии, кандидат технических наук)
  14. Ранее ошибочно считалось, что первой публикацией, в которой дано описание беспроволочного телеграфа, являлось издание протокола 15/201 указанного заседания — в декабрьском выпуске 1895 года журнала РФХО
  15. Журнал Русского физико-химического общества. Т. XXVII. Вып. 8. С. 259 — декабрь 1895.
  16. Лачинов Д. А. Основы метеорологии и климатологии. — СПб, 1895. С. 460.
  17. Ржонсницкий Б. Н. Дмитрий Александрович Лачинов. — М.—Л.: Госэнергоиздат, 1955
  18. 1 2 http://www.computer-museum.ru/connect/popovpr.htm
  19. 1 2 Н. И. Чистяков. Ошибки в изложении истории надо исправить
  20. http://marconisociety.org/family_chronology.html
  21. http://www.computer-museum.ru/connect/marconi_1.htm
  22. 1 2 Летопись радиотехники: 1895—1899
  23. Н. И. Чистяков. Начало радиотехники: факты и интерпретация
  24. http://www.computer-museum.ru/connect/marconi_2.htm
  25. 1 2 Adventures in CyberSound
  26. http://www.india-whisky.org.uk/index_files/Page396.htm
  27. ИЗОБРЕТЕНИЕ РАДИО. КТО БЫЛ ПЕРВЫМ? | № 3, 2006 год | Журнал «Наука и жизнь»
  28. Срок регистрации домена закончился
  29. МАРКОНИ (Marconi), Гульельмо. Лауреаты Нобелевской премии. Наука и техника
  30. Из истории изобретения и начального развития радиосвязи: Сб. док. и материалов / Сост. Л. И. Золотинкина, Ю. Е. Лавренко, В. М. Пестриков; под. ред. проф. В. Н. Ушакова. — СПб.: изд-во СПбГЭТУ «ЛЭТИ» им. В. И. Ульянова (Ленина), 2008. — 288 с. — ISBN 5-7629-0932-8

Ссылки

Wikiquote-logo.svg
В Викицитатнике есть страница по теме
Радио


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?
Синонимы:

Полезное


Смотреть что такое "Радио" в других словарях:

  • радио — радио …   Нанайско-русский словарь

  • Радио-1 — «Радио 1» «Радио 1 Центр» Город Москва Страна …   Википедия

  • Радио 7 — ЗАО «САК» …   Википедия

  • Радио 95 — Радио 95,2FM Радио 95,2FM Радио 95,2FM Страна …   Википедия

  • Радио 22 — Город Барнаул Страна …   Википедия

  • Радио-Т — Логотип подкаста Ведущий Евгений Борт, Григорий Бакунов, Ксения Покровская, Сергей Петренко Язык Русский Список серий 308 на 30.09.2012 Производство Продолжительность 30 120 минут …   Википедия

  • Радио Би-Эй — Radio BA International Город …   Википедия

  • РАДИО — нечто гораздо большее, чем телевидение без видения. Непонятно, но факт. «Пшекруй» Радио замечательное изобретение, позволяющее людям, которым нечего сказать, сказать это людям, которые их не слушают. Радио: средство массовой информации, слушая… …   Сводная энциклопедия афоризмов

  • Радио 40 — Страна Россия …   Википедия

  • Радио СИ — «Радио «СИ» Город Екатеринбург Страна …   Википедия

  • радио... — радио... часть слова, употр. сравн. часто 1. Радио... является первой частью сложных слов и обозначает отнесённость чего либо к радиоактивному излучению. Радиобиология, радиоизотоп, радиолечение, радиотерапевтический. 2. Радио... является первой… …   Толковый словарь Дмитриева


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»