- Ятромеханики
-
Биомеха́ника (новолат. biomechanics: греч. bios жизнь + греч. mechanike механика (наука о машинах)
- движение живого.
- раздел естественных наук, изучающий на основе моделей и методов механики механические свойства живых тканей, отдельных органов и систем, или организма в целом, а также происходящие в них механические явления.
Исторически для области науки, близкой к описанной, использовалось название ятромеханика (от греч. ιατρο — врач).
Биомеханические исследования охватывают различные уровни организации живой материи: биологические макромолекулы, клетки, ткани (биореология), органы, системы органов, а также целые организмы и их сообщества. Чаще всего, объектом исследования этой науки, является движение животных и человека, а также механические явления в тканях, органах и системах. Под механическим движением понимается движение всей биосистемы в целом, а также движение отдельных частей системы относительно друг друга — деформация системы. Все деформации в биосистемах, так или иначе, связаны с биологическими процессами, которые играют решающую роль в движениях животных и человека. Это сокращение мышцы, деформация сухожилия, кости, связок, фасций, движения в суставах. Отдельным направлением биомеханики является биомеханика дыхательного аппарата, его эластичное и неэластичное сопротивление, кинематику (то есть геометрическую характеристику движения) и динамику дыхательных движений, а также другие стороны деятельности дыхательного аппарата в целом и его частей (лёгких, грудной клетки); биомеханика кровообращения изучает упругие свойства сосудов и сердца, гидравлическое сопротивление сосудов току крови, распространение упругих колебаний по сосудистой стенке, движение крови, работу сердца и др. (Гемодинамика);[1]
Биомеханика человека — наука комплексная, она включает в себя самые разнообразные знания других наук, таких как: механика и математика, функциональная анатомия и физиология, возрастная анатомия и физиология, педагогика и теория физической культуры.
Содержание
Биомеханика человека — составная часть прикладных наук, изучающих движение человека
Движения частей тела человека представляют собою перемещения в пространстве и времени, которые выполняются во многих суставах одновременно и последовательно. Движения в суставах по своей форме и характеру очень разнообразны, они зависят от действия множества приложенных сил. Все движения закономерно объединены в целостные организованные действия, которыми человек управляет при помощи мышц. Учитывая сложность движений человека, в биомеханике исследуют и механическую, и биологическую их стороны, причем обязательно в тесной взаимосвязи.
Поскольку человек выполняет всегда осмысленные действия, его интересует, как можно достичь цели, насколько хорошо и легко это получается в данных условиях. Для того чтобы результат движения был лучше, и достичь его было бы легче, человек сознательно учитывает и использует условия, в которых осуществляется движение. Кроме того, он учится более совершенно выполнять движения. Биомеханика человека учитывает эти его способности, чем существенно отличается от биомеханики животных.
Таким образом, биомеханика человека изучает, какой способ и какие условия выполнения действий лучше и как овладеть ими. Общая задача изучения движений состоит в оценке эффективности приложения сил для достижения поставленной цели. Всякое изучение движений, в конечном счете, направлено на то, чтобы помочь лучше выполнять их. Прежде, чем приступить к разработке лучших способов действий, необходимо оценить уже существующие. Отсюда вытекает общая задача биомеханики, сводящаяся к оценке эффективности способов выполнения изучаемого движения. Биомеханика исследует, каким образом полученная механическая энергия движения и напряжения может приобрести рабочее применение. Рабочий эффект измеряется тем, как используется затраченная энергия. Для этого определяют, какие силы совершают полезную работу, каковы они по происхождению, когда и где приложены. То же самое должно быть известно о силах, которые производят вредную работу, снижающую эффективность полезных сил. Такое изучение дает возможность сделать выводы о том, как повысить эффективность действия. При решении общей задачи биомеханики возникают многочисленные частные задачи, не только предусматривающие непосредственную оценку эффективности, но и вытекающие из общей задачи и ей подчиненные.
Метод биомеханики — системный анализ и системный синтез движений на основе количественных характеристик, в частности кибернетическое моделирование движений. Биомеханика, как наука экспериментальная, эмпирическая, опирается на опытное изучение движений. При помощи приборов регистрируются количественные характеристики, например траектории скорости, ускорения и др., позволяющие различать движения, сравнивать их между собой. Рассматривая характеристики, мысленно расчленяют систему движений на составные части — устанавливают её состав. В этом — суть системного анализа.
Система движений как целое — не просто сумма её составляющих частей. Части системы объединены многочисленными взаимосвязями, придающими ей новые, не содержащиеся в её частях качества (системные свойства). Необходимо представлять это объединение, устанавливать способ взаимосвязи частей в системе — её структуру. В этом — суть системного синтеза. Системный анализ и системный синтез неразрывно связаны друг с другом, они взаимно дополняются в системно-структурном исследовании.
При изучении движений в процессе развития системного анализа и синтеза в последние годы все шире применяется метод кибернетического моделирования — построение управляемых моделей (электронных, математических, физических и др.) движений и моделей тела человека.
Клиническая биомеханика
Клиническая (медицинская) биомеханика является составной частью медицинских наук: ортопедии, травматологии, протезирования, (реабилитологии (лечебной физкультуры), педиатрии, физиологии и мн. других. Клиническая биомеханика — научное направление, в котором с позиций механики и общей теории управления с помощью специализировайных методов исследования изучается двигательная активность человека в норме и патологии[2].
Основные разделы:
- Биомеханика нормальной и патологической ходьбы.
- Биомеханика скелетной травмы
- Биомеханика крупных суставов.
- Биомеханика позвоночника[3]
- Биомеханика стопы
Изучаемые явления:
- Ходьба человека - филогенетически древняя хорошо автоматизированая и цикличная локомоция . Изучение анализа ходьбы удобно тем, что в её осуществлении участвует весь опорно-двигательный аппарат. Это дает возможность исследовать функцию любых его отделов, включая верхние конечности и позвоночник.
- Основная стойка — положение и движения общего центра массы тела (при стоянии обследуемого на специальной платформе - метод стабилометрии.
- Статические положения. Информация о конечных положениях позволяет оценить взаимоположение сегментов тела и определить амплитуду движений. Например, оценка формы позвоночника производится в трех плоскостях – фронтальной, сагиттальной и горизонтальной. Оценивается наклон таза в сагиттальной и фронтальной плоскостях, наклон надплечий во фронтальной плоскости. Соотношение тазового и плечевого пояса оценивается во фронтальной и горизонтальной плоскостях. Кроме того, во фронтальной
плоскости оценивается наклон надплечий относительно таза, а в горизонтальной – разворот надплечий относительно таза.
Основные методы исследования:
- подометрия - измерение временных характеристик шага;
- гониометрия - измерение кинематических характеристик движений в суставах;
- динамометрия - регистрация реакций опоры;
- элекромиография - регистрация поверхностной ЭМГ;
- стабилометрия - регистрация положения и движений общего центра давления на плоскость опоры при стоянии.
Биомеханика физических упражений (биомеханика спорта)
Как самостоятельная научная дисциплина биомеханика физических упражнений обогащает теорию физического воспитания, исследуя одну из сторон физических упражнений — технику. Вместе с тем, биомеханика физических упражнений непосредственно используется в практике физического воспитания. Как учебный предмет биомеханика содержит главные положения учения о движениях, обобщенный и систематизированный опыт изучения общих объективных закономерностей. Овладение курсом биомеханики должно вооружить будущего педагога, тренера основами знаний о движениях человека, помочь им повысить теоретический уровень практической деятельности. Объект познания биомеханики — двигательные действия человека как системы взаимно связанных активных движений и положений его тела. В последние годы получило широкое распространение направление в обучении двигательным действиям — педагогическая кинезиология (Х. Х. Гросс), своего рода синтез, слияние биомеханики и педагогики., то есть:
- изучаются особенности техники выдающихся спортсменов;
- определяется рациональная организация действий;
- разрабатываются методические приемы освоения движений, методы технического самоконтроля и совершенствования техники.
Биомеханика физических упражнений делится на общую, дифференциальную и частную.
- Общая биомеханика решает теоретические проблемы и помогает узнать, как и почему человек двигается. Этот раздел биомеханики очень важен для практики физического воспитания и спорта, ибо «нет ничего практичнее хорошей теории».
- Дифференциальная биомеханика изучает индивидуальные и групповые особенности двигательных возможностей и двигательной деятельности. Изучаются особенности, зависящие от возраста, пола, состояния здоровья, уровня физической подготовленности, спортивной квалификации и т. п.
- Частная биомеханика рассматривает конкретные вопросы технической и тактической подготовки в отдельных видах спорта и разновидностях массовой физкультуры. В том числе в оздоровительном беге и ходьбе, общеразвивающих гимнастических упражнениях, ритмической гимнастике на суше (аэробика) и в воде (акваробика) и т. п. Основной вопрос частной биомеханики — как научить человека правильно выполнять разнообразные движения или как самостоятельно освоить культуру движений.
Биомеханика занимает особое положение среди наук в физическом воспитании и спорте. Она базируется на анатомии, физиологии и фундаментальных научных дисциплинах — физике (механике), математике, теории управления. Взаимодействие биомеханики с биохимией, психологией и эстетикой дало жизнь новым научным направлениям, которые, едва родившись, уже приносят большую практическую пользу. В их числе «психобиомеханика», энергостатические и эстетические аспекты биомеханики.
Инженерная биомеханика
Составная часть медико-биологической науки Протезостроение
Биомеханика трудовых действий и рабочих поз
Составная часть науки эргономика (гигиена труда)
Теоретическая биомеханика
Теоретическая биомеханика — наука, основанная на применении математической методологии и математического аппарата.
Компьютерная биомеханика
Одним из ответвлений теоретической биомеханики является компьютерная биомеханика, компьютерное моделирование. Она интенсивно развивается, пополняя теоретическую биомеханику новыми знаниями
Театральная биомеханика
Как театральный, термин был введен В. Э. Мейерхольдом в его режиссёрскую и педагогическую практику в начале 1920-х гг. для обозначения новой системы подготовки актера. «Биомеханика стремится экспериментальным путем установить законы движения актера на сценической площадке, прорабатывая на основе норм поведения человека тренировочные упражнения игры актера». (В. Э. Мейерхольд.) Театральная биомеханика в своей теоретической части, с одной стороны, опиралась на психологическую концепцию У.Джемса (о первичности физической реакции по отношению к реакции эмоциональной), на рефлексологию В. М. Бехтерева и эксперименты И. П. Павлова. С другой стороны, биомеханика представляла собой применение идей американской школы организации труда последователей Ф. У. Тейлора в сфере актёрской игры (т. н. «тейлоризацию театра»): «Поскольку задачей игры актера является реализация определенного задания, от него требуется экономия выразительных средств, которая гарантирует точность движений, способствующих скорейшей реализации задания». (В. Э. Мейерхольд.) В практической части разработки биомеханических упражнений для актёра использовался опыт прошлого театра: сценическая техника комедии дель арте, методы игры Э.Дузе, С.Бернар, Дж. Грассо, Ф.Шаляпина, Ж.Коклена и др. Биомеханическая техника противопоставлялась другим школам актёрской игры: «нутра» и «переживания», вела от внешнего движения к внутреннему. Актёр-биомеханист по Мейерхольду должен был обладать природной способностью к рефлекторной возбудимости и физическим благополучием (точным глазомером, координацией движения, устойчивостью и т. д.). Созданные Мейерхольдом тренировочные биомеханические этюды имели общую схему: «отказ» — движение, противоположное цели; «игровое звено» — намерение, осуществление, реакция. «Биомеханика есть самый первый шаг к выразительному движению» (С. М. Эйзенштейн) [4].
Методы исследования в биомеханике
В настоящее время биомеханика обладает значительным арсеналом методов исследования локомоторной функции, как в статике, так и в динамике, причем изучается не только внешняя картина движения, но и механизмы управления, жизнеобеспечение организма, что дает возможность выявить целый комплекс параметров, характеризующих двигательный образ. В это понятие включаются не только внешние (механические) проявления движения и реакций окружающей среды, но и условия организации управления движениями, согласованная деятельность всех органов и систем организма.. Получаемая в результате биомеханических исследований информация служит основой для определения нормы, позволяет количественно определить степень нарушения локомоторной функции при различных патологических состояниях. Биомеханические исследования достаточно широко используются не только в клинической медицине (функциональная диагностика, ортопедия, травматология, протезирование), но и в спорте, и при разработке различных антропоморфных механизмов (роботы, манипуляторы), и при решении других прикладных задач. Методическая база биомеханических исследований постоянно совершенствуется, используя новейшие достижения науки.
Методы исследования, получившие наибольшее распространение в настоящее время, в клинической биомеханике могут быть классифицированы следующим образом:
I. Соматометричские: антропометрия, фотограмметрия, рентгенография.
II. Кинезиологические: оптические, потенциометрия, электроподография, тензометрия, ихнография.
III. Клинико-физиологические: калориметрия, электромиография, электроэнцефалография и другие методы функциональной диагностики.
Соматометрия
Анропометрия
При клиническом и биомеханическом обследовании используются методы антропометрии с целью получения информации о половых и возрастных особенностях испытуемых об особенностях строения опорно-двигательного аппарата в норме и при патологии, важной информации об осанке. Обычно перед проведением специальных биомеханических исследований измеряют рост пациента стоя и сидя, длину конечностей, амплитуду движений в крупных суставах, определяют массу его тела. При помощи отвесов производят зарисовку диаграммы стояния — проекции на горизонтальную плоскость осей суставов нижних конечностей и таза. Это дает возможность составить представление об архитектонике нижних конечностей при удобном стоянии, определить величину разворота осей суставов в проекции на горизонтальную плоскость, угол разворота стоп, расстояние между внутренними поверхностями ног на различных уровнях и т.д.
Фотограмметрия
К антропометрическим методам сбора и анализа информации относится способ изучения схемы построения опорно-двигательного аппарата в виде так называемой фотограмметрии. Кратко техника фотограмметрии состоит в следующем: обследуемому предлагают принять естественную, наиболее привычную, удобную позу стояния. Перед ним устанавливают кадровую рамку с сантиметровыми делениями по горизонтальным и одной из вертикальных сторон. Через середину рамки натянута нить, служащая отвесом. Фотографируют и для графического анализа изготавливают фотоснимки, на которых измеряют расстояние в сантиметрах между передневерхними остями таза, наклон бедер по анатомическим осям относительно вертикали, расстояние между центрами коленных суставов, наклон голеней по анатомическим осям, угол физиологического вальгуса голеней, расстояние между центрами опоры стоп. Этот метод даст возможность определить возрастные особенности схемы построения опорно-двигательного аппарата в норме и при различных патологических состояниях.
Метод оптической компьютерной топографии
Важную информацию о геометрии тела человека, об особенностях и нарушении осанки можно получить при исследовании специальным методом компьютерной топографии. Этот современный и самый точный метод позволяет количественно с высокой точностью определить координаты любой анатомической точки поверхности тела. Продолжительность обследования составляет 1 – 2 минуты, поэтому этот метод с успехом применяется для массовых исследований[5].
Кинезиологические методы
Целенаправленные движения человека (локомоции) представляют собой устойчивый паттерн движения, характеризующийся определенными кинематическими, динамическими, временными и пространственными параметрами. Вся совокупность последних может рассматриваться как биомеханическое проявление двигательного образа, который складывается для каждого конкретного человека в период постнатального онтогенетического развития и претерпевает изменения в результате изменений на любом уровне двигательного анализатора в зависимости от возраста и условий функционирова¬ния жизнеобеспечивающих систем организма. Естественно, что регистрация кинезиологических параметров движения является необходимой для его характеристики, и при нарушениях функции опорно-двигательного аппарата, и при изучении локомоции спортсмена.
Наиболее достоверные сведения о движении могут быть получены с помощью оптических методов, которые обеспечивают комплексную регистрацию любого количества точек тела человека и внешней обстановки относительно пространственно-временной координатной сетки и дают информацию о кинематике исследуемых точек в форме, удобной для математического анализа. Координаты же, как известно, есть тот материал, из анализа которого может быть почерпнуто максимальное количество сведений о протекании снятого движения. Циклография (от цикла... и ...графия), метод изучения движений человека путём последовательного фотографирования (до сотен раз в секунду) меток или лампочек, укрепленных на движущихся частях тела. Впервые фотографирование фаз движения было предложено в 80-х гг. 19 в. французским учёным Э. Мареем. Н. А. Бернштейн в 20-х гг. 20 в. усовершенствовал и модифицировал Ц., например он предложил кимоциклографию — съёмку на передвигающуюся плёнку. На основе анализа циклограмм — циклограмметрии — для ряда движений были получены данные о траектории отдельных точек тела, о скоростях и ускорениях движущихся частей тела, что дало возможность вычислить величины сил, обусловливающих данное движение. Эти сведения легли в основу современных представлений о принципах управления движениями человека, использованы при изучении спортивных движений, двигательных нарушений и др. К Ц. близок метод киносъёмки движений с последующей обработкой кадров наподобие циклограмм.
Наиболее простым и часто применяемым на практике видом киносъемки является фотограмметрия. Эта съемка представляет собой регистрацию движений человека и объектов окружающей среды в плоскости, перпендикулярной оптической оси аппарата. При этом аппарат устанавливается так, чтобы в его поле зрения находилось все, что будет подвергнуто изучению и последующему анализу. Полученные с помощью оптических методов регистрации экспериментальные данные подвергаются математической обработке. В качестве датчиков («светящихся точек») для получения кинематических характеристик движений конечностей применяют метки или электрические лампочки, которые укрепляют на исследуемых суставах. Снаряжение испытуемого почти невесомо, поэтому оно не вносит никаких изменений в структуру двигательного образа.
Конвергентная стереофотограмметрическая съемка и зеркальная циклограмметрия тождественны. Действительно, зеркальная циклограмметрическая съемка под углом а (угол между главной оптической осью киноаппарата и плоскостью зеркала — угол съемки) есть не что иное, как съемка двумя аппаратами, оптические оси которых конвергируют под углом а. Вычисление пространственных координат производится по формулам математической зависимости между пространственными координатами помещения (в случае, если съемка производится в камеральных условиях) и координатами перспективных изображений. Кроме аналитических методов, в настоящее время нашли широкое распространение различные номографические приемы, основанные на известных положениях синтетической геометрии.
Номограмма, с помощью которой осуществляется обработка изоинформации, представляет собой функциональную сетку и служит для получения реальных (действительных) координат любой фиксированной точки на сегменте или суставе конечности.
Электромеханические методы
В настоящее время в биомеханических исследованиях ши¬рокое распространение получили, наряду с оптическими, и электрические методы регистрации. Это можно объяснить в первую очередь тем, что информация, представленная в виде электрических сигналов, является удобной для обработки радио- и электронными приборами. Кроме того, большинство процессов, протекающих в живых организмах, сопровождается различными электрическими явлениями, что облегчает получение информации в виде электрических сигналов.
При использовании электрических методов регистрации неэлектрических величин (каковыми являются кинематические и динамические составляющие движения) в практике биомеханических исследований применяют измерение и регистрацию кинематических составляющих движения осуществляются с помощью линейных потенциометрических датчиков 2 типов: с входной функцией в виде углового и линейного механического перемещения. Потенциометрические датчики преобразуют функцию механического перемещения в аналоговый электрический сигнал, который затем регистрируется в соответствующем масштабе.
Исследование динамических составляющих движения осуществляют с помощью тензоменрических методов. В качестве тензочувствительного элемента используют различные тензодатчики – датчики давления. Тензодатчики применяются для определения вертикальных составляющих реакции опоры при ходьбе (ихнография) или для регистрации стабилограмм.
Подография – регистрация времени опоры отдельных участков стопы при ходьбе с целью изучения функции переката исследуется при помощи специальных датчиков, вмонтированных в подошву обуви.
Стабилография – объективный метод регистрации положения и проекции общего центра масс на плоскость опоры – важный параметр механизма поддержания вертикальной позы. Обычно регистрируют площадь миграции общего центра масс (ОЦМ) в проекции горизонтальной плоскости, совмещенный с очерком стопы.
Клинико-физиологические методы
Информация о функциональной анатомии опорно-двигательного аппарата человека и биомеханических параметрах движения не может достаточно полно охарактеризовать весь комплекс процессов, происходящих в организме в условиях двигательной активности. С целью изучения механизма управления движениями, их энергообеспеченности в биомеханических исследованиях применяются некоторые физиологические методы. Из обширного арсенала методов современной физиологии избираются те средства функциональной оценки жизнеобеспечивающих систем организма, которые в сочетании со специальными биомеханическими методами дают возможность глубже изучить процесс формирования двигательного навыка и реакции организма па реализацию движения. В связи с этим наиболее широко в клинико-биомеханических исследованиях используются различные варианты кардиографии, электроэнцефалография, электромиография, косвенная калориметрия и другие методы функциональной диагностики.
Калориметрия
Энергия, освобождаемая организмом в процессе жизнедеятельности, переходит непосредственно в работу механическую, электрическую, физико-химическую и т. д., при этом освобождается некоторое количество тепла. Все тепло, отдаваемое организмом, дает сумму энергетических превращений за определенный промежуток времени.
Количество выделяемого тепла может быть определено непосредственно в специальной калориметрической камере, в которую помещают испытуемого. Впервые такая камера была по¬строена в 1880—1886 гг. на кафедре общей патологии Военно-медицинской академии им. С. М. Кирова В. В. Пашутиным. Однако в настоящее время применяется более простой метод непрямой калориметрии, который состоит в исследовании легоч¬ного газообмена и последующем пересчете количества потребляемого кислорода в единицы тепловой энергии. Теоретические обоснования метода непрямой калориметрии базируются на том, что вся энергия, освобождающаяся в про¬цессе жизнедеятельности человека, есть результат распада (окисления) жиров, белков и углеводов. Экспериментально ус¬тановлено среднее количество тепла, освобождающегося при окислении 1 г каждого из указанных веществ. Установлен и тепловой эквивалент кислорода при окислении этих веществ.
Энергетические траты здорового человека складываются из: 1) основного обмена, 2) прироста обмена вследствие специфи¬чески-динамического действия принятой пищи, 3) прироста обмена в результате мышечной работы.
Основной обмен составляет наименьшую интенсивность обмена веществ, которая необходима для обеспечения жизнеспо¬собности. Энергетически он выражается в величинах теплопро¬дукции в состоянии покоя. Основной обмен определяется не ранее, чем через 12—18 ч после приема пищи, в условиях пол¬ного мышечного и психического покоя, при температуре окружающего воздуха 18—20° С.
Наиболее распространенным в настоящее время методом непрямой калориметрии является метод Дугласа — Холдена. Суть его заключается в том, что испытуемый дышит атмосферным воздухом, причем выдыхаемый воздух собирается в мешок из прорезиненной ткани емкостью 100—150 л. Количество выдыхаемого воздуха за данное время измеряется газовыми часами, а качественный состав исследуется в газоанализаторе Холдена.
Электромиография
Для изучения деятельности мышц в процессе выполнения двигательного акта используется электромиография. Ещё в 1884 г. Н.Е. Введенским описан опыт телефонического прослушивания потенциалов действия мышц человека, а в 1907 г. немецкий физиолог Н.
Отведение электромиограммы в настоящее время осуществляется двумя способами: накожными и игольчатыми электродами, позволяющими избирательно регистрировать активность одной двигательной единицы. Применение накожного биполярного отведения с межэлектродным расстоянием 20—25 мм позволяет регистрировать суммарную активность многих двигательных единиц. Развитие электромиографии привело к появлению специальной области клинической электрофизиологии — клинической электромиографии, находящей широкое применение в нервной и хирургической клиниках, в ортопедии и протезировании, в клинической и спортивной биомеханике. В последние годы область применения метода электромиографии существенно расширилась за счёт использования биопотенциалов мышц в качестве показателя в системах адаптивного регулирования мышечного тонуса.
История
История биомеханики неразрывно связана с историей техники, физики, биологии и медицины, а также с историей физической культуры и спорта. Многие достижения этих наук определяли развитие учения о движении живых существ.
Современную биомеханику нельзя представить без законов механики, открытых Архимедом, Галилеем, Ньютоном, без физиологии Павлова, Сеченова, Анохина, так как и без современных компьютерных технологий.
Истоки биомеханики
Биомеханика — одна из самых старых ветвей биологии. Её истоками были работы Аристотеля, Галена, Леонардо да Винчи[6].
В своих естественнонаучных трудах «Части движения и перемещение животных», Аристотель заложил основу того, что в дальнейшем, спустя 2300 лет назовут наукой биомеханикой. В своих научных трактатах он свойственной ему мышлением описывает животный мир и закономерности движения животных и человека. Он писал о частях тела, необходимых для перемещения в пространстве (локомоции), о произвольных и непроизвольных движениях, о мотивации движений животных и человека, о сопротивлении окружающей среды, о цикличности ходьбы и бега, о способности живых существ приводить себя в движение…
Величайшим ученым-медиком античного времени (после Гиппократа) был Клавдий Гален (131—201 гг. н. э.). В соответствии с мировоззрением античного времени, Гален понимал целостность организма. Он писал:
«В общей совокупности частей, все находится во взаимном согласии и … все содействует деятельности каждой из них».
Изучение нервов позволило Галену сделать вывод о том, что нервы по своей функциональной особенности делятся на три группы: те, что идут к органам чувств, выполняют функцию восприятия, идущие к мышцам ведают движением, а идущие к органам охраняют их от повреждения. Основной его труд — О назначении частей человеческого тела. Гален экспериментально показал, что конечность попеременно то сгибается внутренними, то разгибается наружными мышцами. Так, описывая пятую мышцу, самую большую, по его мнению, из всех мышц тела, приводящую бедро и состоящую из большой, средней и малой мышц, прикрепляющихся к внутренним и задним частям бедренной кости и нисходящей вниз почти до коленного сочленения, он, анализируя её функцию, писал:
«Задние волокна этой мышцы, идущие от седалищной кости, укрепляют ногу, напрягая сустав. Не менее сильно это действие производится нижней порцией волокон, идущих от лобковой кости, к чему присоединяется еще легкое вращательное движение внутрь. Выше их лежащие волокна приводят бедро внутрь точно так же, как самые верхние приводят и в то же время несколько поднимают бедро»
[7]. На развитие механики в средние века оказали существенное влияние исследования Леонардо да Винчи (1452—1519 г.) по теории механизмов, трению и другим вопросам. Изучая функции органов, он рассматривал организм как образец «природной механики». Впервые описал ряд костей и нервов, особое внимание уделял проблемам сравнительной анатомии, стремясь ввести экспериментальный метод и в биологию. Этот великий художник, математик, механик и инженер впервые высказал важнейшую для будущей биомеханики мысль:
«Наука механика потому столь благородна и полезна более всех прочих наук, что все живые тела, имеющие способность к движению, действуют по ее законам».
Его успех как великого художника также немало зависит от биомеханической направленности его картин, — в них детально прорисована техника движения. Его наблюдения, очевидные в наши дни, в средние века были революционными. Например,
«Мускулы начинаются и оканчиваются всегда в соприкасающихся костях, и никогда они не начинаются и не оканчиваются на одной и той же кости, так как они ничего не могли бы двигать, разве только самих себя»
[8]. Леонардо, безусловно, является основоположником функциональной анатомии, составной части биомеханики. Он не только описал топографию мышц, но и значение каждой мышцы для движения тела.
Возникновение биомеханики как науки
Основателем науки биомеханики по праву считается Джованни Борелли, итальянский натуралист. Профессор университетов в Мессине (1649) и Пизе (1656). Помимо работ в области физики, астрономии и физиологии, он разрабатывал вопросы анатомии и физиологии с позиций математики и механики. Он показал, что движение конечностей и частей тела у человека и животных при поднятии тяжестей, ходьбе, беге, плавании можно объяснить принципами механики, впервые истолковал движение сердца как мышечное сокращение, изучая механику движения грудной клетки, установил пассивность расширения лёгких.
Наиболее известный труд ученого «Движение животных» («Dе Motu Animalium»). Его учение основано на твердых биомеханических принципах, в своей работе он описал принципы мускульного сокращения и впервые представил математические схемы движения. Он впервые использует биомеханическую модель для объяснения движения в биомеханической системе.
Новым толчком развития биомеханики был связан с изобретение метода кинофотосъемки движения человека. Французский физиолог, изобретатель и фотограф. Этьенн Марей(1830–1904) впервые применил кинофотосъемку для изучения движений человека. Так же впервые им был применен метод нанесения маркеров на тело человека – протопип будующей циклографии. Важной вехой в истории биомеханики явились исполненные Э. Майбриджем (1830-1904)(США) циклы фотографий, снятых несколькими камерами с разных точек зрения. Серия фотографий ("Галопирующая лошадь", 1887), показала необычайную красоту пластики реальных движений. С тех пор кинофотосъемка применяется для анализа движений как один из основных методов биомеханики. Начало анализа движения человека было положено братьями Вебер (1836) в Германии. Первый трехмерный математический анализ человеческой походки проведен Вильгельмом Брауном и его студентом Отто Фишером в 1891 году. Методология анализа ходьбы не изменилась по сегодняшний день. Кроме того, Браун и Фишер впервые изучили массу, объём и центр масс человеческого тела, (проведя исследования на трупах), и получили данные, которые длительно использовали как биомеханический стандарт. Ими был также предложен метод определения массы сегментов тела и его объёма, используя погружение частей тела в воду. Так были получены данные возрастных изменений центров масс. Исследования Брауна и Фишера положили начало новой эпохи биомеханики – биомеханики ходьбы, а период со второй половины XIX столетия стали называть столетием ходьбы.
Современный этап развития биомеханики
Создателем теоретической основы современной биомеханики - учения о двигательной деятельности человека и животных можно по праву считать Николая Александровича Бернштейна (1896-1966)[9]
Созданная Бернштейном теория многоуровневого управления движениями, в том числе локомоциями человека, положила начало развитию новых принципов понимания жизнедеятельности организма. Поставив в центр внимания проблему активности организма по отношению к среде, Бернштейн объединил биомеханику и нейрофизиологию в единую науку физиологию движений[10]. Понятие Н.А. Бернштейна о двигательной задаче как психической основе действий человека открыло пути изучения высших уровней сознания в двигательной деятельности человека. Подверглись подробной разработке вопросы формирования, строения и решения двигательной задачи. Эти вопросы стали рассматриваться в тесной связи со строением двигательного состава действия как системы движений [11]. Ряд работ Бернштейна посвящён изучению динамики мышечных сил и иннервационной структуры двигательных актов. Он внёс коренные усовершенствования в технику регистрации и анализа движений (кимоциклограмма, циклограмметрия). Некоторые идеи, высказанные Бернштейном в 30-х гг., предвосхитили основные положения кибернетики. Бернштейну принадлежит одна из первых чётких формулировок понятия обратной связи в физиологии, а также идея по-уровневой организации движений. В связи с недостаточностью понятия "рефлекторной дуги" для объяснения двигательных актов Бернштейн ввёл понятие "рефлекторного кольца", основанное на трактовке всей системы отношений организма со средой как непрерывного циклического процесса.
В 1926 г.Н.А. Бернштейном на основе исследований в биомеханической лаборатории Центрального института труда было издано "Общая биомеханика" как первая часть "Основ учения о движениях человека". Важно отметить, что в учебнике "Физиология человека"[12], изданном в 1946 г. (под ред. М.Е. Маршака), уже полностью представлено учение Н.А. Бернштейна о координации движений, без которого невозможно и представить современную биомеханику[13].
Примечания
- ↑ Статья «биомеханика» в большой советской энциклопеди
- ↑ Клиническая биомеханнка/Под ред. В. И. Филатова. — Л.: Медицина, 1980.— 200 с.
- ↑ Гладков А. В., Черепанов Е. А. Клиническая биомеханика в диагностике патологии позвоночника. Хирургия позвоночника 1 / 2004 (c. 103-109)
- ↑ «Театральная биомеханика», статья из энциклопедии «Кругосвет»
- ↑ Угнивенко В.И., Никитин С.Е. Применение оптической компьютерной топографии для повышения эффективности назначения протезно-ортопедических изделий. Вестник гильдии протезистов-ортопедов, 2001. -№5, -C.35-39.
- ↑ Александер Р. — Биомеханика. Перевод с англ. И-во: МИР, М., 1970, с. 5
- ↑ Гален К. О назначении частей человеческого тела: Пер. с древнегреч. — М.: Медицина, 1971 кн. XV, гл. VIII; , с. 885
- ↑ http://www.vinci.ru/3/tezaurus/9/index.html Леонардо да Винчи. Тетради по анатомии
- ↑ В. Левин. Человек, разгадавший тайну живого движения. "Наука и жизнь" №10, 2005 http://www.geneticsafety.orgwww.nkj.ru/archive/articles/2099/
- ↑ Н.А.Бернштейн. Физиология движений и активность. М.: Наука, 1990. С. 373-392. http://flogiston.ru/library/bernstein
- ↑ Донской Д.Д., Дмитриев С.В. Психосемантические механизмы управления двигательными действиями человека // Теория и практика физ. культуры. 1999, № 9, с. 2-6.
- ↑ Маршак М.Е. Физиология человека.-М.:Медгиз,1946.-345с.
- ↑ Донской Д.Д. Н.А. БЕРНШТЕИН И РАЗВИТИЕ ОТЕЧЕСТВЕННОЙ БИОМЕХАНИКИ Теория и практика физической культуры, 1996, №11 http://lib.sportedu.ru/press/tpfk/1996n11/p4-9.htm
См. также
Ссылки
Wikimedia Foundation. 2010.