- Устойчивое равновесие
-
Содержание
Классическое определение
Механическое равновесие - состояние системы, при котором сумма всех сил, действующих на каждую её частицу, равна нулю и алгебраическая сумма моментов всех сил, приложенных к телу относительно оси вращения, проходящей через любую точку O, равна нулю ΣΜO(Fί)=0. Такое определение ограничивает как поступательное движение тела, так и вращательное.
В состоянии равновесия тело находится в покое (вектор скорости равен нулю) в выбранной системе отсчета.
Определение через энергию системы
В механике сплошной среды, где принимается гипотеза сплошности, такое определение неприменимо. К тому же данное определение ничего не говорит об одной из наиболее важных характеристик равновесия — его устойчивости. Поэтому более общее и распространённое определение механического равновесия звучит так: Механическое равновесие - состояние системы, при котором её положение в конфигурационном пространстве находится в точке с нулевым градиентом потенциальной энергии.
Так как энергия и силы связаны фундаментальными зависимостями, это определение эквивалентно первому. Однако определение через энергию может быть расширено для того, чтобы получить информацию об устойчивости положения равновесия.
Виды равновесия
Приведём пример для системы с одной степенью свободы. В этом случае достаточным условием положения равновесия будет являться наличие локального экстремума в исследуемой точке. Как известно, условием локального экстремума дифференцируемой функции является равенство нулю её первой производной. Чтобы определить, когда эта точка является минимумом или максимумом, необходимо проанализировать её вторую производную. Устойчивость положения равновесия характеризуется следующими вариантами:
- неустойчивое равновесие;
- устойчивое равновесие;
- безразличное равновесие.
Неустойчивое равновесие
В случае, когда вторая производная < 0, потенциальная энергия системы находится в состоянии локального максимума. это означает, что положение равновесия неустойчиво. Если система будет смещена на небольшое расстояние, то она продолжит своё движение за счёт сил, действующих на систему.
Устойчивое равновесие
Вторая производная > 0: потенциальная энергия в состоянии локального минимума, положение равновесия устойчиво. Если систему сместить на небольшое расстояние, она вернётся назад в состояние равновесия.
Безразличное равновесие
Вторая производная = 0: в этой области энергия не варьируется, а положение равновесия является безразличным. Если система будет смещена на небольшое расстояние, она останется в новом положении.
Виды устойчивости Неустойчивое равновесие
Устойчивое равновесие
Безразличное равновесие
Устойчивость в системах с большим числом степеней свободы
Если система имеет несколько степеней свободы, то можно получить различные результаты для различных направлений, однако равновесие будет устойчиво только в том случае, если оно устойчиво во всех направлениях.
Wikimedia Foundation. 2010.