- Сопряжённое априорное распределение
-
Сопряжённое априорное распределение (англ. conjugate prior) и сопряжённое семейство распределений — одни из основных понятий в байесовской статистике.
Рассмотрим задачу о нахождении распределения параметра
(рассматриваемого как случайная величина) по имеющемуся наблюдению
. По теореме Байеса, апостериорное распределение вычисляется из априорного распределения с плотностью вероятности
и функции правдоподобия
по формуле:
Если апостериорное распределение
принадлежит тому же семейству вероятностных распределений, что и априорное распределение
(т.е. имеет тот же вид, но с другими параметрами), то это семейство распределений называется сопряжённым семейству функций правдоподобия
. При этом распределение
называется сопряжённым априорным распределением к семейству функций правдоподобия
.
Знание сопряжённых семейств распределений существенно упрощает вычисление апостериорных вероятностей в байесовской статистике, так как позволяет заменить вычисление громоздких интегралов в формуле Байеса простыми алгебраическими манипуляциями над параметрами распределений.
Содержание
Пример
Для случайной величины, распределённой по закону Бернулли (бросание монетки) с неизвестным параметром
(вероятность успеха), в качестве сопряжённого априорного распределения обычно выступает бета-распределение с плотностью вероятности:
где
и
выбираются так, чтобы отразить имеющуюся априорную информацию или убеждение о распределении параметра q (выбор
= 1 and
= 1 даст равномерное распределение), а Β(
,
) — бета-функция, служащая здесь для нормализации вероятности.
Параметры
и
часто называют гиперпараметрами (параметрами априорного распределения), чтобы отличить их от параметров функции правдоподобия (в данном случае, q).
Если взять выборку из n значений этой случайной величины, и среди них окажется s успехов и f неудач, то апостериорное распределение параметра q будет равно:
Это апостериорное распределение также оказывается распределённым по закону бета-распределения, но лишь с немного другими параметрами, чем у априорного распределения.
Таблица сопряжённых семейств распределений
В таблицах ниже показано каким образом изменяются параметры апостериорного распределения после выборки из n независимых, одинаково-распределённых наблюдений
. Второй столбец — параметр функции правдоподобия, относительно которого строится семейство сопряжённых распределений.
Дискретно-распределённые функции правдоподобия
Функция правдоподобия Параметр Сопряжённое семейство распределений Гиперпараметры априорного распределения Гиперпараметры апостериорного распределения Бернулли p Бета Биномиальное p Бета Отрицательное биномиальное p Бета Пуассона λ Гамма Пуассона λ Гамма [1]
Мультиномиальное p (вектор вероятностей) Дирихле Геометрическое p0 (вероятность) Бета Непрерывно-распределённые функции правдоподобия
Функция правдоподобия Параметр Сопряжённое семейство распределений Гиперпараметры априорного распределения Гиперпараметры апостериорного распределения Равномерное Парето Экспоненциальное λ Гамма [2]
Нормальное
с известной дисперсией σ2μ Нормальное Нормальное
с известным τ = 1/σ2μ Нормальное Нормальное
с известным средним μσ2 Scaled inverse chi-square Нормальное
с известным средним μτ (= 1/σ2) Гамма [2]
Нормальное
с известным средним μσ2 Обратное гамма-распределение Парето k Гамма Парето xm Парето при условии
.
Гамма
с известной α[1]β (inverse scale) Гамма Примечания
- ↑ 1 2 Параметризация гамма-распределения с параметрами: θ = 1/β and k = α.
- ↑ 1 2 beta_rate
Литература
- DeGroot, Morris H. Optimal Statistical Decisions. Wiley Classics Library. 2004. (Originally published in 1970.) ISBN 0-471-68029-X.
Категория:- Байесовская статистика
Wikimedia Foundation. 2010.