- квазирегулярный
- adj. quasiregular, semiregular, pseudo-regular
Русско-английский словарь математических терминов. — Американское математическое общество. Э.Д. Лоувотер. 1990.
Русско-английский словарь математических терминов. — Американское математическое общество. Э.Д. Лоувотер. 1990.
КВАЗИРЕГУЛЯРНЫЙ РАДИКАЛ — кольца наибольший квазирегулярный идеал данного кольца. Идеал Акольца Rназ. квазирегулярным, если Аявляется квазирегулярным кольцом. Во всяком альтернативном (в частности, ассоциативном) кольце существует К. р.; он совпадает с суммой всех правых… … Математическая энциклопедия
АЛЬТЕРНАТИВНЫЕ КОЛЬЦА И АЛГЕБРЫ — Альтернативным кольцом (А. к.) наз. кольцо, в к ром каждые два элемента порождают ассоциативное подкольцо; альтернативной алгеброй (А. а.) наз. линейная алгебра, являющаяся А. к. Согласно теореме Артина класс всех А. к. задается системой тождеств … Математическая энциклопедия
ДЖЕКОБСОНА РАДИКАЛ — кольца A идеал J(А)ассоциативного кольца А, удовлетворяющий следующим двум условиям: 1) J(A) наибольший квазирегулярный идеал в А(кольцо Rназ. квазирегулярным, если для любого его элемента аразрешимо уравнение а+x + ах=0);2) в факторкольце нет… … Математическая энциклопедия
ЙОРДАНОВА АЛГЕБРА — алгебра, в к рой справедливы тождества 4 Такие алгебры впервые возникли в работе П. Йордана [1], посвященной аксиоматизации основ квантовой механики (см. также [2]), а затем нашли применения в алгебре, анализе и геометрии. Пусть А ассоциативная… … Математическая энциклопедия
КОЛЬЦА И АЛГЕБРЫ — множества с двумя бинарными операциями, к рые обычно принято наз. сложением и умножением. Кольцом наз. множество: 1) являющееся абелевой группой относительно сложения (в частности, в кольце существует нулевой элемент, обозначаемый 0, и… … Математическая энциклопедия
НЕАССОЦИАТИВНЫЕ КОЛЬЦА И АЛГЕБРЫ — множества с доумя бинарными операциями + и ., удовлетворяющими всем аксиомам ассоциативных колец и алгебр, кроме, быть может, аксиомы ассоциативности умножения. Первые примеры неассоциативных колец (Н. к.) и неассоциативных алгебр (Н. а.), не… … Математическая энциклопедия